

Historic Preservation Services

Community Development & Neighborhood Services 281 North College Avenue P.O. Box 580 Fort Collins, CO 80522.0580

970.224.6078 <u>preservation@fcgov.com</u> fcgov.com/historicpreservation

REPORT OF ALTERATIONS TO DESIGNATED RESOURCE

Site Number/Address: 718 Remington St. Laurel School National Register Historic District ISSUED: April 24, 2024

Jordan Wiswell and Meghan King 718 Remington St. Fort Collins, CO 80524

Dear Property Owners:

This report is to inform you of the results of this office's review of proposed alterations to the Hahn House at 718 Remington St., pursuant to Fort Collins Municipal Code, Chapter 14, <u>Article IV</u>. A copy of this report may be forwarded to the Colorado Office of Archaeology and Historic Preservation as well.

The alterations reviewed include:

• Detached pergola with solar panel system at property rear

Our staff review of the proposed work finds the alterations meet the SOI Standards for Rehabilitation and the project appears to be routine in nature with minimal effects to the historic resource, meeting the requirements of Article IV cited above.

Notice of the approved application has been provided to building and zoning staff to facilitate the processing of any permits that are needed for the work.

Please note that work beyond that indicated in your permit application/correspondence requires additional approval.

If you have any questions regarding this report, or if I may be of any assistance, please do not hesitate to contact me. I can be reached at yjones@fcgov.com or at 970-224-6045.

Sincerely,

Yani Jones Historic Preservation Planner

Solar PV **BUILDING PERMIT APPLICATION:** All information on the application must be filled out (as applicable). Scope of work (check one) New system installation \Box Alterations to an existing system \square Reinstallation of an existing system (new equipment or expansion) (same equipment and same location) **USE / TYPE OF BUILDING** (check the correct uses below): Residential Commercial \ Single family detached Duplex/Two-Family ☐ Single Family Attached (Townhome) ☐ Multi-Family (Apartment/Condo) ☐ Bar \square Church ☐ Hotel/Motel ☐ Garage 🗌 Bank \square Medical Office Retail Other: UNIT#:____ JOB SITE ADDRESS: PROPERTY OWNER INFO: (All owner information is required – NOT optional) Last Name______ First Name_____ Middle_____ Street Address_____City____State___Zip___ Email Phone # CONTRACTOR INFO: Company Name ____LIC #_____CERT # _____ License Holder Name **CONSTRUCTON INFO** (check any that apply): Thermal Hydronic System ☐ Battery Storage ☐ PV (photovoltaic)□ Roof □ Mounting: Ground **UTILITES INFO:** Electric Service Upgrade? Yes □ No □ Existing Amps New Amps Electric Meter Relocation? Yes □ No □ Yes □ No □ Meter change out? Yes □ No □ Panel change out? **VALUE OF CONSTRUCTION** (materials and labor): \$ **DESCRIPTION OF WORK** (Include KWh and number of solar panels): JOBSITE SUPERVISOR CONTACT INFO: Name______Phone _____ **SUBCONTRACTOR INFO:** Plumbing Electrical Applicant: I hereby acknowledge that I have read this application and state that the above information is correct and agree to comply with all requirements contained herein and City of Fort Collins ordinances and state laws regulating building construction. Applicant Signature _____ Type or Print Name Phone # Email

Building Services
PO Box 580
281 N College Ave
Fort Collins, CO 80524
970-416-2740 phone 970-224-6134 fax

HOMEOWNER AFFIDAVIT					
1, <u>Sor day</u> , as owner of record of the property located at:					
718 Hemington St., Fort Collins, Colorado, hereby declare and attest to					
the following: (please check only the one that applies):					
OPTION 1: CONSTRUCTION OF NEW HOME					
□ I am acting on my behalf for the purpose of obtaining a building permit and personally constructing my home. The home to be constructed is on the above property and will be my primary residence. I have not personally constructed any other new homes in the Fort Collins city limits within the past 24-month period.					
OPTION 2. PERMITTED WORK ON DETACHED SINGLE FAMILY HOME					
I am acting on my behalf for the purpose of obtaining a building permit and personally constructing an alteration or addition to my house, acting as my own general contractor. The house to be altered is on the above property and is my personal primary residence.					
OPTION 3: PERMITED WORK ON ATTACHED SINGLE FAMILY DWELLING UNIT.					
□ I am acting on my behalf for the purpose of obtaining a building permit and personally constructing a non-structural alteration to my attached single family dwelling unit. The house to be altered is my personal primary residence. I am aware that I cannot complete or supervise any structural, electrical, plumbing or mechanical work and must hire contractors/subcontractors who are currently licensed and insured with the City of Fort Collins*.					
I am personally performing all of the work or hiring City of Fort Collins licensed trades people, or will be continuously supervising unpaid volunteers (see Option 3 for attached dwellings). The work is directly related to the construction of the above referenced home.					
I understand that any person(s) or agent(s) contracted to perform structural wood-framing, plumbing, HVAC, electrical or roofing work, MUST BE licensed contractors in accordance with the regulation of the City of Fort Collins.					
I understand that failure to comply with any of the above conditions may result in revocation of any permits associated with the above Permit Application number, forfeiture of any fees that have been collected, a Stop Work Order and potentially a court summens.					
Sign in the presence of Notary Public State of Colorado Notary ID # 20224043827 My Commission Expires 11-16-2026					
The foregoing Affidavit was acknowledged before me on this 22 nd day of					
April , 2024 (month, year) by Jordan wswell .					
Witness my hand and official seal My commission expires:					

Building Services 281 N. College Ave. P.O. Box 580

Fort Collins, CO 80524

Voice: 970.416.2740 FAX: 970.224.6134

HOMEOWNER AFFIDAVIT

Homeowners of a <u>DETACHED</u> single-family home may personally perform and /or act as their own general contractor for any work on their <u>PRIMARY</u> residence. Permit requirements are applicable. If said homeowner hires and pays anyone for work that requires a City licensed contractor, the City licensed contractor needs to be listed on the building permit application, and will need to be current on City license and insurance requirements before the building permit can be issued.

Homeowners of an ATTACHED single-family home (townhouse, condominium or duplex), may perform LIMITED "MINOR ALTERATIONS AND REPAIRS" by City Code as follows:

"A building owner and any unpaid volunteers or paid workers employed by said owner who perform only minor alterations and repairs to such building, provided that all such work is under the continuous personal supervision of said owner, and further provided that no building owner, or unpaid volunteer or paid worker employed by said owner, may engage in the following types of work without obtaining the appropriate contractor license."

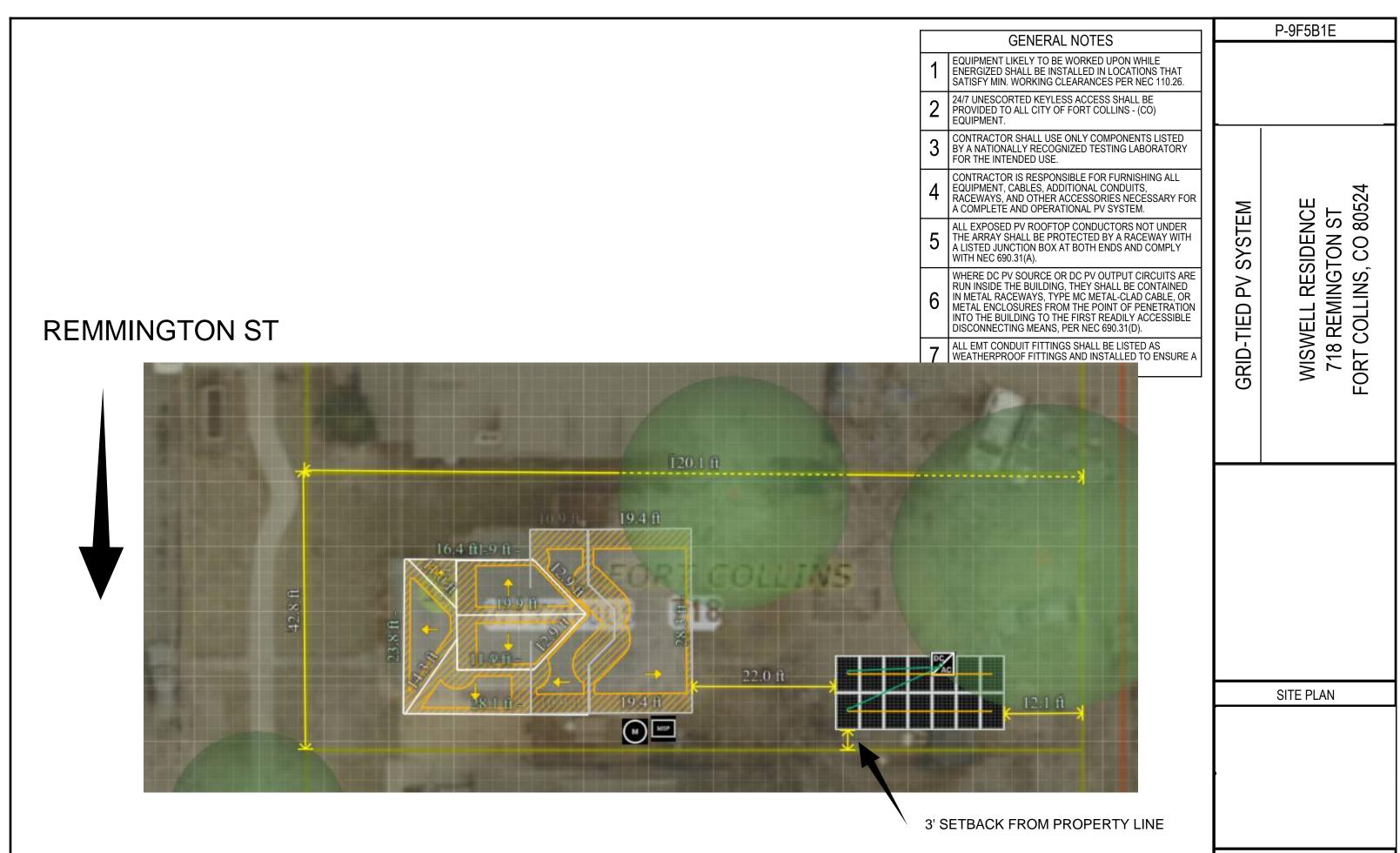
Furthermore, the work must be limited to minor alterations and repairs, which, DO NOT include:

- 1. Any alterations/installations involving, fire-resistive assemblies, alterations to primary and secondary framework; electrical, plumbing, or mechanical systems; and replacement of more than 100 sq. ft. of roofing; **OR**
- 1. Any nonstructural construction, alterations, or repairs when the total value of the work exceeds \$2000.

PAID WORKERS

Regardless of ownership status, <u>paid</u> non-owner worker(s) or contractors performing overall project supervision MUST BE A CITY LICENSED GENERAL CONTRACTOR. Any paid specialized trades that perform any one of the following: structural wood framing, roofing, electrical, plumbing, or HVAC, MUST BE SUB-CONTRACTORS licensed by the City.

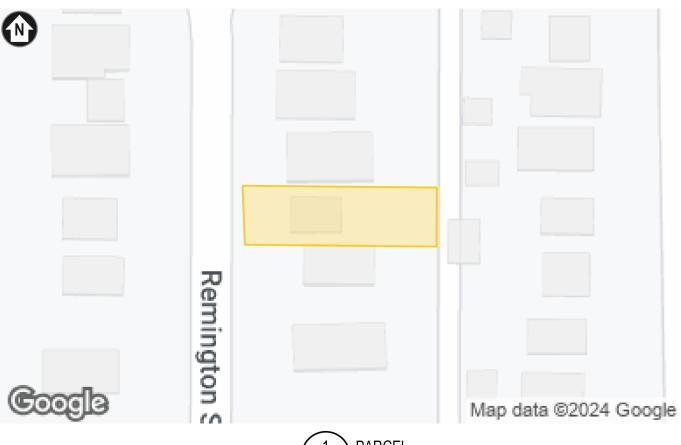
APPLICATIONS & PENALTIES

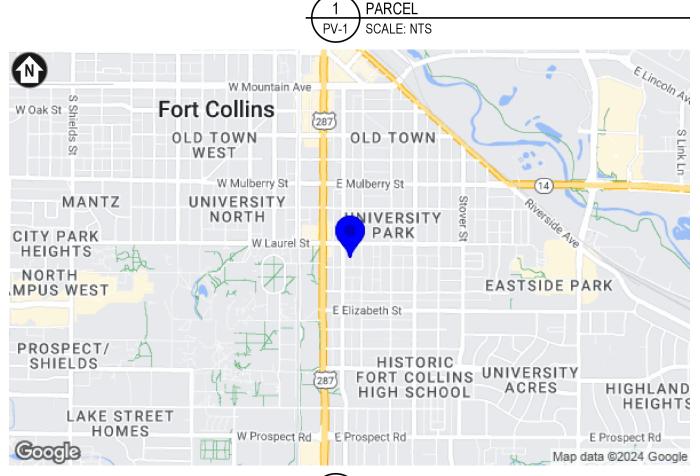

A homeowner acting as their own "general contractor" for work on their own primary residence, must submit a notarized City Homeowner Affidavit form to Building Services before a building permit can be issued. Failure to comply with the above conditions can result in a "Stop Work" order on the project, permit revocation, forfeiture of fees, and a court summons.

EXEMPTIONS

(1) Any homeowner of an attached dwelling and any unpaid volunteers or paid workers employed by said owner who perform only minor alterations and repairs to such building, provided that all such work is under the continuous personal supervision of said owner, and further provided that NO homeowner of an attached dwelling, or unpaid volunteer or paid worker employed by said owner, may engage in the following types of work without obtaining an

appropriately licensed City contractor:


- (a) Alterations to the primary or secondary structural frame work (except for the repair and replacement of existing window and doors, provided that such repair or replacement does not create larger openings or greater spans for such headers);
- (b) Alterations to fire-resistive assemblies as defined in the building code,
- (c) Alterations to or the installation of electrical, plumbing or mechanical systems, (except for electrical/plumbing fixture replacement in the same location as original).
- (d) Replacement/installation of more than a total of one (1) square (100 square feet) of roofing.
- (e) Nonstructural construction, alterations, or repairs to a building performed by the building owner, or by his or her unpaid volunteer or paid workers, when the total construction value of all work (including the related work done on the project by licensed specialized trade contractors) exceeds twoo thousand dollars (\$2000).



PV-2

	DIRECTORY OF PAGES			
PV-1 PROJECT SUMMARY				
PV-2 SITE PLAN				
PV-3 ELECTRICAL PLAN				
PV-4	PV SAFETY LABELS			
PV-5 ATTACHMENT PLAN				
PV-6 ATTACHMENT DETAILS				
PV-7	7 CUSTOM CONTENT			
	ANCHOR DATASHEET			
	DISCONNECT DATASHEET			
	INVERTER DATASHEET			
	MODULE DATASHEET			
N N	MOUNTING SYSTEM DATASHEET			
APPENDIX	MOUNTING SYSTEM ENGINEERING LETTER			
	PV HAZARD CONTROL DEVICE DATASHEET			
	UL 2703 CLASS A FIRE CERTIFICATION			
	UL 2703 GROUNDING AND BONDING CERTIFICATION			

PROJECT DETAILS			
PROPERTY OWNER	JORDAN WISWELL		
PROPERTY ADDRESS	718 REMINGTON ST, FORT COLLINS, CO 80524		
APN	0055468		
ZONING	RESIDENTIAL		
USE AND OCCUPANCY CLASSIFICATION	ONE- OR TWO-FAMILY DWELLING GROUP (GROUP R3)		
AHJ	CITY OF FORT COLLINS		
UTILITY COMPANY	CITY OF FORT COLLINS - (CO)		
ELECTRICAL CODE	2023 NEC (NFPA 70)		
FIRE CODE	2021 IFC		
OTHER BUILDING CODES	IBC 2021		

SCALE: NTS

SCOPE OF WORK

THIS PROJECT INVOLVES THE INSTALLATION OF A GRID-INTERACTIVE PV SYSTEM. PV MODULES WILL BE MOUNTED USING A PREENGINEERED MOUNTING SYSTEM. THE MODULES WILL BE ELECTRICALLY CONNECTED WITH DC TO AC POWER INVERTERS AND INTERCONNECTED TO THE LOCAL UTILITY USING MEANS AND METHODS CONSISTENT WITH THE RULES ENFORCED BY THE LOCAL UTILITY AND PERMITTING JURISDICTION.

THIS DOCUMENT HAS BEEN PREPARED TO DESCRIBE THE DESIGN OF A PROPOSED PV SYSTEM WITH ENOUGH DETAIL TO DEMONSTRATE COMPLIANCE WITH APPLICABLE CODES AND REGULATIONS. THE DOCUMENT SHALL NOT BE RELIED UPON AS A SUBSTITUTE FOR FOLLOWING MANUFACTURER INSTALLATION INSTRUCTIONS. THE SYSTEM SHALL COMPLY WITH ALL MANUFACTURERS INSTALLATION INSTRUCTIONS, AS WELL AS ALL APPLICABLE CODES. NOTHING IN THIS DOCUMENT SHALL BE INTERPRETED IN A WAY THAT OVERRIDES THEM. CONTRACTOR IS RESPONSIBLE FOR VERIFICATION OF ALL DETAILS IN THIS DOCUMENT.

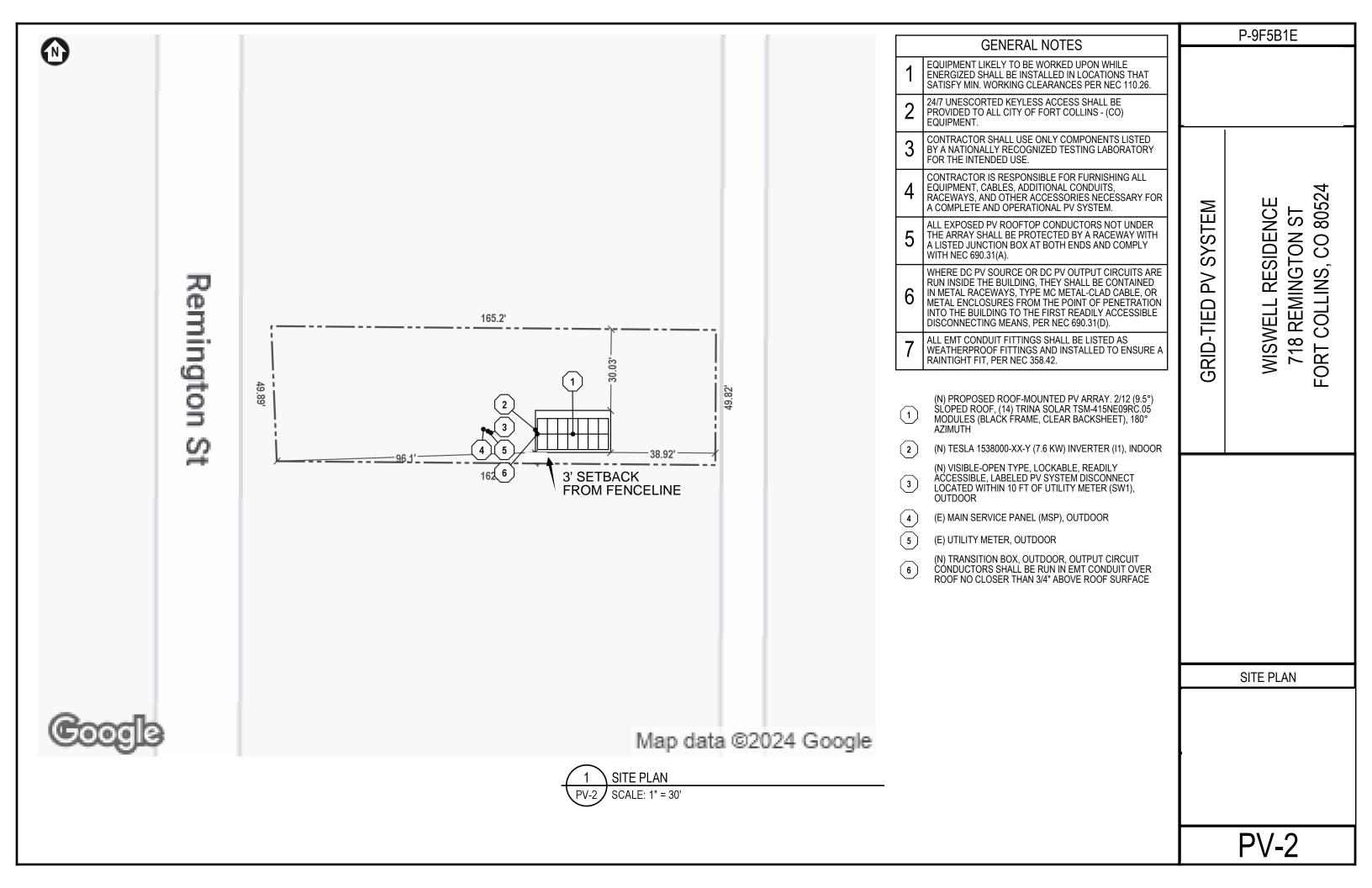
PV SYSTEM			
DESCRIPTION	NEW GRID-INTERACTIVE PHOTOVOLTAIC SYSTEM WITH NO ENERGY STORAGE		
PV SYSTEM DC RATING	5.81KW		
PV SYSTEM AC RATINGS	7.60KW, 32.0A		
DERATED AC POWER	5.358KW		
INVERTER(S)	1 X TESLA 1538000-XX-Y (7.6 KW)		
PV MODULE(S)	14 X TRINA SOLAR TSM-415NE09RC.05		
PV ARRAY WIRING	(1) STRING OF 7 (MPPT #1) (1) STRING OF 7 (MPPT #2)		

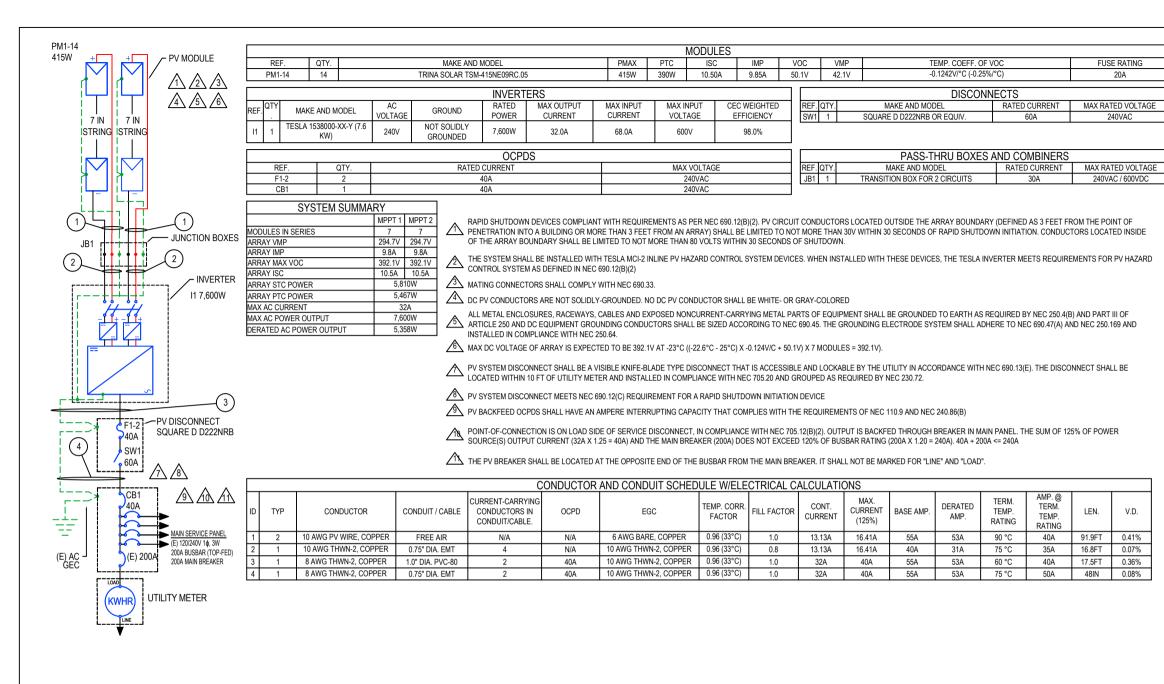
	INTERCONNECTION DETAILS			
	POINT OF INTERCONNECTION	NEW LOAD-SIDE AC CONNECTION PER NEC 705.12(B)(2) AT MSP		
	UTILITY SERVICE	120/240V 1Ф		
		MAIN SERVICE PANEL W/ TOP-FED 200A BUSBAR 200A MCB		

SITE DESIGN PARAMETERS			
DRY BULB EXTREME LOW	-23°C (-9°F)		
DRY BULB 2% HIGH	32°C (90°F)		
DATA SOURCE	ASHRAE DATASET FORT COLLINS DOWNTOWN		
WIND (ASCE 7-16)	140 MPH, EXPOSURE CATEGORY B, RISK CATEGORY II		
GROUND SNOW LOAD	35 PSF		

P-9F5B1E

WISWELL RESIDENCE 718 REMINGTON ST FORT COLLINS, CO 80524


SYSTEM


 \geq

GRID-TIED

PROJECT SUMMARY

PV-1

GENERAL ELECTRICAL NOTES

FUSE RATING

20A

MAX RATED VOLTAGE

VΠ

0.41%

0.07%

0.36%

0.08%

LEN

48IN

UTILITY HAS 24-HR UNRESTRICTED ACCESS TO ALL PHOTOVOLTAIC SYSTEM COMPONENTS LOCATED AT THE SERVICE ENTRANCE. CONDUCTORS EXPOSED TO

SUNLIGHT SHALL BE LISTED AS ISUNLIGHT RESISTANT PER NEC ARTICLE 300.6 (C) (1) AND ARTICLE 310.10 (D).

CONDUCTORS EXPOSED TO WET LOCATIONS SHALL BE SUITABLE FOR USE IN WET LOCATIONS PER NEC ARTICLE 310.10 (C).

GROUNDING NOTES

ALL EQUIPMENT SHALL BE PROPERLY GROUNDED PER THE REQUIREMENTS OF NEC ARTICLES 250 & 690

PV MODULES SHALL BE GROUNDED USING MODULE LUGS OR RACKING INTEGRATED GROUNDING CLAMPS AS ALLOWED BY LOCAL

JURISDICTION. ALL OTHER EXPOSED METAL PARTS SHALL BE GROUNDED USING UL-LISTED LAY-IN LUGS. INSTALLER SHALL CONFIRM THAT MOUNTING SYSTEM HAS BEEN EVALUATED FOR COMPLIANCE WITH UL 2703 "GROUNDING AND BONDING" WHEN USED WITH PROPOSED PV

IF THE EXISTING MAIN SERVICE PANEL DOES NOT HAVE A VERIFIABLE GROUNDING

MODULE

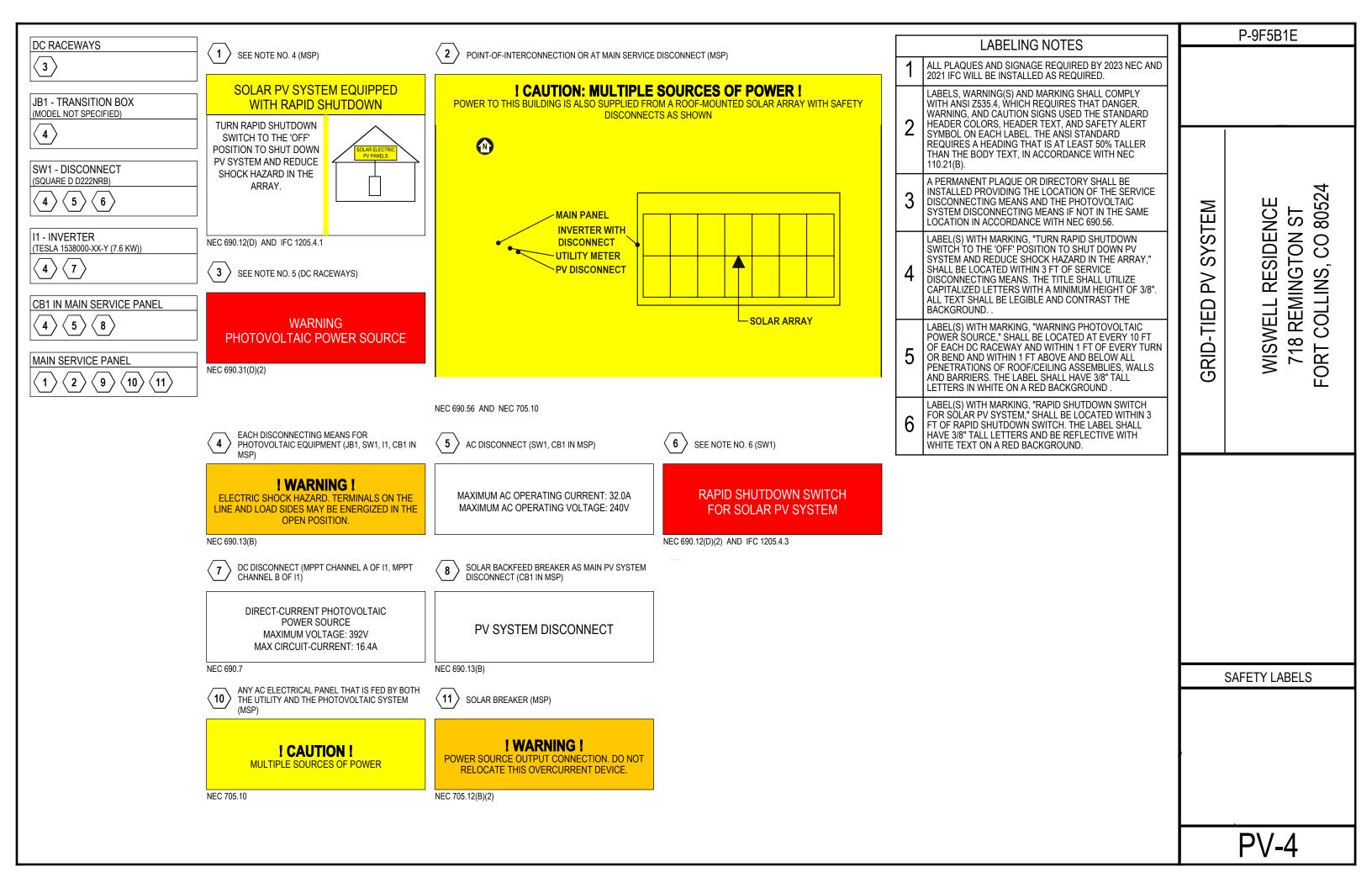
ELECTRODE, IT IS THE CONTRACTOR'S RESPONSIBILITY TO **INSTALL A SUPPLEMENTAL** GROUNDING ELECTRODE. AC SYSTEM GROUNDING

ELECTRODE CONDUCTOR (GEC) 5 ISHALL BE A MINIMUM SIZE #8AWG WHEN INSULATED. #6AWG IF BARE WIRF.

EQUIPMENT GROUNDING CONDUCTORS SHALL BE SIZED ACCORDING TO NEC ARTICLE 690.45.

AND BE A MINIMUM OF #10AWG WHEN NOT EXPOSED TO DAMAGE, AND #6AWG SHALL BE USED WHEN EXPOSED TO DAMAGE GROUNDING AND BONDING

CONDUCTORS, IF INSULATED, SHALL ' BE COLOR CODED GREEN. OR


MARKED GREEN IF #4AWG OR LARGER

FORT COLLINS, CO 80524 SYSTEM RESIDENCE 718 REMINGTON ST \geq \Box **WISWELL** RD-TI

P-9F5B1E

SINGLE-LINE DIAGRAM

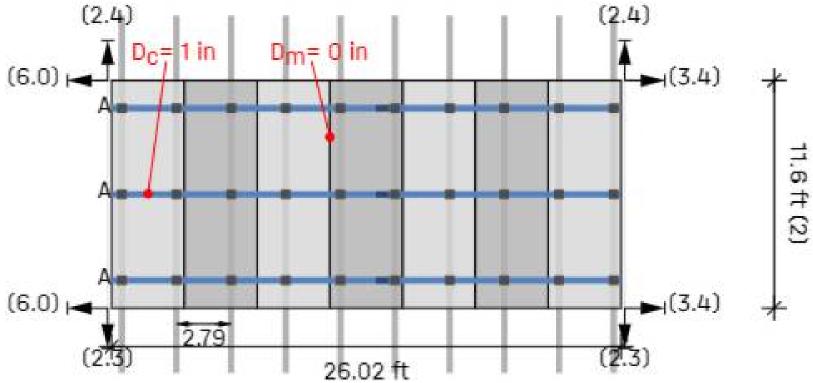
SINGLE-LINE DIAGRAM SCALE: NTS

STRUCTURAL DESIGN PARAMETERS			
ELEVATION 4993 FT			
SEISMIC	0.207 S _{DS}		
WIND (ASCE 7-16)	140 MPH, EXPOSURE CATEGORY B, RISK CATEGORY II		
GROUND SNOW LOAD	35 PSF		

ROOF PROPERTIES			
ROOF MATERIAL NONE, OPEN TRUSS			
SLOPE	2/12 (9.5°)		
MEAN ROOF HEIGHT	11.3FT		
ROOF DECKING	NONE		
CONSTRUCTION	2x12 TRUSSES		

MODULE MECHANICAL PROPERTIES			
MODEL TRINA SOLAR TSM-415NE09RC.			
DIMENSIONS (AREA)	69.4IN X 44.6IN X 1.2IN (21.5 SQ FT)		
WEIGHT	48.1 LBS		

MOUNTING SYSTEM PROPERTIES			
RAIL MODEL K2 CROSSRAIL 44-X			
ANCHOR MODEL K2 , 2.5IN AIR GAI			
FASTENING METHOD	2.5 INCH EMBEDMENT INTO TRUSSES WITH (1) 5/16IN DIA. FASTENER		
GROUNDING AND BONDING	INTEGRAL GROUNDING CERTIFIED TO UL 2703 REQUIREMENTS		


DEAD LOAD CALCULATIONS					
LOAD	TOTAL LBS				
MODULES 14 48.1			672.9		
LINEAR FEET OF RAIL	50.1				
ANCHORS	40	1.2	50.0		
MISC. HARDWARE 5.7			5.7		
TOTAL ARRAY WEIGHT	782.0 LBS				
AREA NAME QTY SQFT		TOTAL SQFT			
MODULES	14	21.5	301.0		
POINT LOAD (782.0 LBS / 4	19.6 LBS				
DIST. LOAD (782.0 LBS / 301.0 SQFT)			2.6 PSF		

NOTES

TRUSS LOCATIONS ARE APPROXIMATE. CONTRACTOR MAY NEED TO MAKE MINOR ADJUSTMENTS TO ANCHOR LOCATIONS. IN NO CASE SHALL THE ANCHOR SPACING EXCEED "MAX. ANCHOR SPACING"

ANCHOR PLACEMENT PARAMETERS (ASCE 7-16)					
WIND PRESSURE ZONE	MODULE WIND EXPOSURE	MAX. ALLOWABLE RAIL SPAN	MAX. ANCHOR SPACING	MAX. ALLOWABLE CANTILEVER	
ZONES 1, 2E, 2N, 2R, 3E	NORMAL	52.0IN	33.0IN	17.3IN	
ZONE 3R	NORMAL	51.0IN	33.0IN	17.0IN	

DISTANCE α IS EQUAL TO 10% OF THE BUILDING'S LEAST HORIZONTAL DIMENSION ("LHD") OR 40% OF THE EAVE HEIGHT, WHICHEVER IS SMALLER, BUT NOT LESS THAN 4% OF THE LHD OR 3 FT. THESE SETBACKS ARE APPLIED TO THE BUILDING FOOTPRINT AND PROJECTED TO THE ROOF PLANES IN ACCORDANCE WITH GUIDANCE PROVIDED BY ASCE 7-16 FIGURES 30.3-2B-I.

 α = MAX(MIN(0.4 * EAVE HEIGHT, 0.1 * LHD), 0.04 * LHD, 3 FT)

3.0 FT = MAX(MIN(0.4 * 10.0 FT, 0.1 * 15.6 FT), 0.04 * 15.6 FT, 3 FT)

718 REMINGTON ST FORT COLLINS, CO 80524 **WISWELL RESIDENCE**

PV-5

P-9F5B1E

GRID-TIED PV SYSTEM

Conductor, Conduit, and OCPD Sizing Validation

1. Maximum System DC Voltage Test

1.1. Tesla inverter w/14 Trina Solar TSM-415NE09RC.05 (415W)s

Array Properties

Array Type	String Inverter Array
System Description	Tesla inverter w/14 Trina Solar TSM- 415NE09RC.05 (415W)s
Module	TSM-415NE09RC.05 (415W)
Highest number of modules in series in a PV Source Circuit	7
Design Low Temp.	-22.6°C
Module voc	50.1V
Temp. Coefficient voc	-0.124V/C

NEC Code Calculations

A. Maximum Voltage of PV Source Circuit	392.1V
see NEC 690.7(A)	

NEC 690.7(A) requires that if the PV module manufacturer provides a temperature coefficient of open-circuit voltage, it must be used to calculate the PV array's maximum system voltage. It includes an information note recommending the use of the ASHRAE 'Extreme Annual Mean Minimum Design Dry Bulb Temperature' as the design low temperature. Using these values, the module Voc (50.1V) will increase to 56.01V at the design low temperature (-22.6°C).

 $(-22.6^{\circ}\text{C} - 25^{\circ}\text{C}) \text{ X } -0.124\text{V/C} + 50.1\text{V} = 56.01\text{V}$ The string Voc at the design low temperature is 392.1V. 56.01V X 7 = 392.1V

NEC Code Validation Tests

1.	PV Source Circuit maximum Voc must not exceed 600V	PASS
	392.1V < 600V = true	

Circuit Section Properties

Conductor	10 AWG PV Wire, Copper
Equipment Ground Conductor (EGC)	6 AWG Bare, Copper
OCPD(s)	N/A
Raceway/Cable	Free Air
Lowest Terminal Temperature Rating	90 °C
Maximum Wire Temperature	33 °C
Power Source Description	String of 7 TSM-415NE09RC.05 (415W) PV modules
Power Source Current	10.5A
Voltage	294V - 350V
Module Series Fuse Rating	20A
Total Number of Series Strings	1

2. Wire, Conduit, and OCPD Code Compliance Validation

2.1. #1: PV Source Circuit: PV Source to Transition Box

NEC Code Calculations

A. Continuous Current	13.13A
see NEC 690.8(A)(1)(a)(1)	

The continuous current for this PV source circuit is equal to the short circuit current of the PV module (10.5A) multiplied by 1.25 10.5A X 1.25 = 13.13A

B. Ampacity of Conductor	55A
see NEC Table 310.17	

Ampacity (30°C) for a copper conductor with 90°C insulation in free air is

C. Derated Ampacity of Conductor 53A see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article 100

The temperature factor for 90°C insulation at 33°C is 0.96. The fill factor for conductors in free air is 1.

The ampacity derated for Conditions of Use is the product of the conductor ampacity (55A) multiplied by the temperature factor (0.96) and by the fill factor (1).

55A X 0.96 X 1 = 52.8A rounded to 53A

D. Max Current for Terminal Temp. Rating 40A see NEC 110.14(C)

The lowest temperature rating for this conductor at any termination is

Using the method specified in NEC 110.14(C), the maximum current permitted to ensure that the device terminal temperature does not exceed its 90°C rating would be the amount referenced in the 90°C column in NEC Table 310.16, which is 40A.

E. Minimum Required EGC Size 12 AWG see NEC 690.45 and NEC Table 250.122

No OCPD is used in circuit and an assumed rating of 16A has been calculated in accordance with NEC 690.45

The smallest EGC size allowed is 12 AWG for OCPD rating 16A according to Table 250.122.

According to NEC 690.45, it is not necessary to increase the size of the PV array's EGC when conductors are oversized for voltage drop considerations.

NEC Code Validation Tests

_		
1.	System must meet requirements for not having series fuse (NEC 690.9(A))	PASS
2.	Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 53A >= 13.13A = true	PASS
3.	Conductor Ampacity must be at least 125% of Continuous Current (NEC 215.2(A)(1)) 55A >= 13.13A x 1.25 = true	PASS
4.	Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 40A >= 13.13A X 1.25 = true	PASS
5.	EGC must meet code requirements for minimum size (NEC Table 250.122) 6 AWG >= 12 AWG = true	PASS
6.	EGC must meet code requirements for physical protection (NEC 250.120(C)) 6 AWG >= 6 AWG = true	PASS

2.2. #2: PV Source Circuit: Transition Box to Inverter

Circuit Section Properties

Conductor	10 AWG THWN-2, Copper
Equipment Ground Conductor (EGC)	10 AWG THWN-2, Copper
OCPD(s)	N/A
Raceway/Cable	0.75" dia. EMT
Lowest Terminal Temperature Rating	75 °C
Maximum Wire Temperature	33 °C
Power Source Description	String of 7 TSM-415NE09RC.05 (415W) PV modules
Power Source Current	10.5A
Voltage	294V - 350V
Module Series Fuse Rating	20A
Total Number of Series Strings	1

NEC Code Calculations

A. Continuous Current	13.13A
see NEC 690.8(A)(1)(a)(1)	

The continuous current for this PV source circuit is equal to the short circuit current of the PV module (10.5A) multiplied by 1.25
10.5A X 1.25 = 13.13A

B. Ampacity of Conductor	40A
see NEC Table 310.16	

Ampacity (30°C) for a copper conductor with 90°C insulation in conduit/cable is 40A.

C. Derated Ampacity of Conductor	31A
see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article	100

The temperature factor for 90°C insulation at 33°C is 0.96. The fill factor for a conduit/cable that has 4 wires is 0.8. The ampacity derated for Conditions of Use is the product of the conductor ampacity (40A) multiplied by the temperature factor (0.96) and by the fill factor (0.8).

40A X 0.96 X 0.8 = 30.72A rounded to 31A

D. Max Current for Terminal Temp. Rating	35A	
see NEC 110.14(C)		

The lowest temperature rating for this conductor at any termination is 75°C

Using the method specified in NEC 110.14(C), the maximum current permitted to ensure that the device terminal temperature does not exceed its 75°C rating would be the amount referenced in the 75°C column in NEC Table 310.16, which is 35A.

E. Minimum Required EGC Size	12 AWG
see NEC 690.45 and NEC Table 250.122	

No OCPD is used in circuit and an assumed rating of 16A has been calculated in accordance with NEC 690.45 The smallest EGC size allowed is 12 AWG for OCPD rating 16A

The smallest EGC size allowed is 12 AWG for OCPD rating 16A according to Table 250.122.

According to NEC 690.45, it is not necessary to increase the size of the PV array's EGC when conductors are oversized for voltage drop considerations.

F. Minimum Recommended Conduit Size	0.5"	dia.
see NEC 300.17		

The total area of all conductors is 0.1055in². With a maximum fill rate of 0.4, the recommended conduit diameter is 0.5.

Qty	Description	Size	Туре	Area	Total Area
4	Conductor	10 AWG	THWN-2	0.0211in²	0.0844in²
1	Equipment Ground	10 AWG	THWN-2	0.0211in²	0.0211in²
5					0.1055in²

 $0.1055in^2 / 0.4 = 0.2638in^2$ (Corresponding to a diameter of 0.5")

NEC Code Validation Tests

1.	System must meet requirements for not having series fuse (NEC 690.9(A))	PASS			
2.	Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 31A >= 13.13A = true	PASS			
3.	Conductor Ampacity must be at least 125% of Continuous Current (NEC 215.2(A)(1)) 40A >= 13.13A x 1.25 = true				
4.	Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 35A >= 13.13A X 1.25 = true	PASS			
5.	EGC must meet code requirements for minimum size (NEC Table 250.122) 10 AWG >= 12 AWG = true	PASS			
6.	Conduit must meet code recommendation for minimum size (NEC 300.17) 0.75in. >= 0.5in. = true	PASS			

2.3. #3: Inverter Output: Inverter to Utility Disconnect

Circuit Section Properties

Conductor	8 AWG THWN-2, Copper
Equipment Ground Conductor (EGC)	10 AWG THWN-2, Copper
OCPD(s)	40A
Raceway/Cable	1.0" dia. PVC-80
Lowest Terminal Temperature Rating	60 °C
Maximum Wire Temperature	33 °C
Power Source Description	7600W Inverter
Power Source Current	32A
Voltage	240V
Inverter Max OCPD rating	40A

NEC Code Calculations

A. C	Continuous Current	32A
see /	NEC Article 100	

Equipment maximum rated output current is 2 X 10.5A = 32A

B. Ampacity of Conductor	55A
see NEC Table 310.16	

Ampacity (30°C) for a copper conductor with 90°C insulation in conduit/cable is 55A.

C. Derated Ampacity of Conductor	53A
see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article	100

The temperature factor for 90°C insulation at 33°C is 0.96. The fill factor for a conduit/cable that has 2 wires is 1. The ampacity derated for Conditions of Use is the product of the conductor ampacity (55A) multiplied by the temperature factor (0.96) and by the fill factor (1).

55A X 0.96 X 1 = 52.8A rounded to 53A

D. Max Current for Terminal Temp. Rating	40A
see NEC 110.14(C)	

The lowest temperature rating for this conductor at any termination is 60°C .

Using the method specified in NEC 110.14(C), the maximum current permitted to ensure that the device terminal temperature does not exceed its 60°C rating would be the amount referenced in the 60°C column in NEC Table 310.16, which is 40A.

E. Minimum Allowed OCPD Rating	40A
see NEC 240.4	

NEC 690.9(B)(1) requires OCPD be rated for no less than 1.25 times Continuous Current of the circuit.

32A X 1.25 = 40A

F. Minimum Required EGC Size	10 AWG
see NEC Table 250.122	

The smallest EGC size allowed is 10 AWG for OCPD rating 40A according to Table 250.122.

G. Minimum Recommended Conduit Size 0.75" dia. see NEC 300.17

The total area of all conductors is 0.1309in². With a maximum fill rate of 0.4, the recommended conduit diameter is 0.75.

Qty	Description	Size	Туре	Area	Total Area
2	Conductor	8 AWG	THWN-2	0.0366in²	0.0732in²
1	Neutral	8 AWG	THWN-2	0.0366in²	0.0366in²
1	Equipment Ground	10 AWG	THWN-2	0.0211in²	0.0211in²
4					0.1309in²

 $0.1309in^2 / 0.4 = 0.3273in^2$ (Corresponding to a diameter of 0.75")

NEC Code Validation Tests

1.	OCPD rating must be at least 125% of Continuous Current (NEC 240.4) 40A >= 32A X 1.25 = true	PASS
2.	Derated ampacity must exceed OCPD rating, or rating of next smaller OCPD (NEC 240.4) 53A >= 40A (OCPD Rating) = true	PASS
3.	Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 53A >= 32A = true	PASS
4.	Conductor Ampacity must be at least 125% of Continuous Current (NEC 215.2(A)(1)) 55A >= 32A x 1.25 = true	PASS
5.	Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 40A >= 32A X 1.25 = true	PASS
6.	EGC must meet code requirements for minimum size (NEC Table 250.122) 10 AWG >= 10 AWG = true	PASS
7.	Conduit must meet code recommendation for minimum size (NEC 300.17) 1.0in. >= 0.75in. = true	PASS

2.4. #4: Utility Disconnect Output: Utility Disconnect to Main Service Panel

Circuit Section Properties

Conductor	8 AWG THWN-2, Copper
Equipment Ground Conductor (EGC)	10 AWG THWN-2, Copper
OCPD(s)	40A
Raceway/Cable	0.75" dia. EMT
Lowest Terminal Temperature Rating	75 °C
Maximum Wire Temperature	33 °C
Power Source Description	7600W Inverter
Power Source Current	32A
Voltage	240V

NEC Code Calculations

A. Continuous Current	32A
see NEC Article 100	

Equipment maximum rated output current is 2 X 10.5A = 32A

B. Ampacity of Conductor	55A
see NEC Table 310.16	

Ampacity (30°C) for a copper conductor with 90°C insulation in conduit/cable is 55A.

C. Derated Ampacity of Conductor	53A
see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article 1	100

The temperature factor for 90°C insulation at 33°C is 0.96. The fill factor for a conduit/cable that has 2 wires is 1. The ampacity derated for Conditions of Use is the product of the conductor ampacity (55A) multiplied by the temperature factor (0.96) and by the fill factor (1).

55A X 0.96 X 1 = 52.8A rounded to 53A

D. Max Current for Terminal Temp. Rating	50A
see NEC 110.14(C)	

The lowest temperature rating for this conductor at any termination is 75°C

Using the method specified in NEC 110.14(C), the maximum current permitted to ensure that the device terminal temperature does not exceed its 75°C rating would be the amount referenced in the 75°C column in NEC Table 310.16, which is 50A.

E. Minimum Allowed OCPD Rating	40A
see NEC 240.4	

NEC 690.9(B)(1) requires OCPD be rated for no less than 1.25 times Continuous Current of the circuit.

32A X 1.25 = 40A

F. Minimum Required EGC Size	10 AWG
see NEC Table 250.122	

The smallest EGC size allowed is 10 AWG for OCPD rating 40A according to Table 250.122.

G. Minimum Recommended Conduit Size	0.75" dia.
see NEC 300.17	

The total area of all conductors is 0.1309in². With a maximum fill rate of 0.4, the recommended conduit diameter is 0.75.

Qty	Description	Size	Туре	Area	Total Area
2	Conductor	8 AWG	THWN-2	0.0366in²	0.0732in²
1	Neutral	8 AWG	THWN-2	0.0366in²	0.0366in²
1	Equipment Ground	10 AWG	THWN-2	0.0211in²	0.0211in²
4		-			0.1309in²

 $0.1309in^2 / 0.4 = 0.3273in^2$ (Corresponding to a diameter of 0.75")

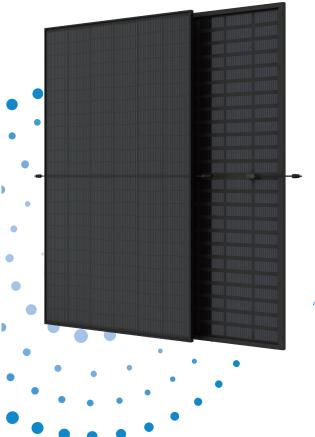
NEC Code Validation Tests

1.	OCPD rating must be at least 125% of Continuous Current (NEC 240.4) 40A >= 32A X 1.25 = true	PASS
2.	Derated ampacity must exceed OCPD rating, or rating of next smaller OCPD (NEC 240.4) 53A >= 40A (OCPD Rating) = true	PASS
3.	Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 53A >= 32A = true	PASS
4.	Conductor Ampacity must be at least 125% of Continuous Current (NEC 215.2(A)(1)) 55A >= 32A x 1.25 = true	PASS
5.	Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 50A >= 32A X 1.25 = true	PASS
6.	EGC must meet code requirements for minimum size (NEC Table 250.122) 10 AWG >= 10 AWG = true	PASS
7.	Conduit must meet code recommendation for minimum size (NEC 300.17) 0.75in. >= 0.75in. = true	PASS

PRODUCT: TSM-NE09RC.05

PRODUCT RANGE:

410-435W


435W

MAXIMUM POWER OUTPUT

0~+5W

21.8%

MAXIMUM EFFICIENCY POSITIVE POWER TOLERANCE

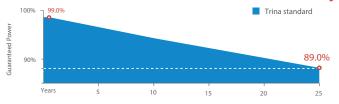
Smaller panel, Bigger power generation

- Up to 435W, 21.8% module efficiency.
- Reduce installation cost with higher module power on the roof.
- Boost performance in warm weather with lower temperature coefficiency

High Reliability

•Innovative non-destructive cell cutting technology for improved mechanical resistance and strength

Lower Degradation, longer warranty, higher output


- First-year degradation 1% and annual degradation at 0.4%
- Up to 25 years product warranty and 25 years power warranty

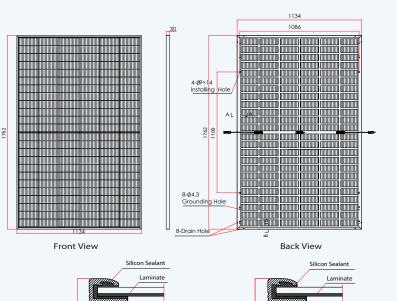
Universal solution for residential and C&I rooftops

- Easy for integration, designed for compatibility with existing mainstream inverters and diverse mounting systems
- Perfect size and low weight for handling and installation
- Most valuable solution on low load capacity rooftops
- Mechanical performance up to 6000 Pa positive load and 4000 Pa negative load

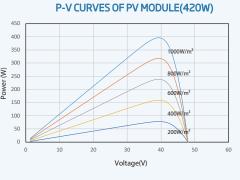
Trina Solar's Vertex Bifacial Dual Glass Performance Warranty

Comprehensive Products and System Certificates

V CYCLE


IEC61215/IEC61730/IEC61701/IEC62716/UL61730 ISO 9001: Quality Management System

ISO 14001: Environmental Management System ISO14064: Greenhouse Gases Emissions Verification ISO45001: Occupational Health and Safety Management System



I-V CURVES OF PV MODULE(420 W)

Voltage(V)

ELECTRICAL DATA (STC)

Peak Power Watts-PMAX (Wp)*	410	415	420	425	430	435
Power Tolerance-PMAX (W)			0 ~	+5		
Maximum Power Voltage-V MPP (V)	41.8	42.1	42.5	42.8	43.2	43.6
Maximum Power Current-I MPP (A)	9.81	9.85	9.89	9.92	9.95	9.99
Open Circuit Voltage-V oc (V)	49.7	50.1	50.5	50.9	51.4	51.8
Short Circuit Current-I sc (A)	10.46	10.50	10.54	10.57	10.60	10.65
Module Efficiency η m (%)	20.5	20.8	21.0	21.3	21.5	21.8
STC: Irrdiance 1000W/m2, Cell Temperature 25°C, Air Mas	s AM1.5.	*Measuring tole	ance: ±3%.			

Power Tolerance-PMAX (W)			0 ~	+5		
Maximum Power Voltage-V MPP (V)	41.8	42.1	42.5	42.8	43.2	43.6
Maximum Power Current-I MPP (A)	9.81	9.85	9.89	9.92	9.95	9.99
Open Circuit Voltage-V oc (V)	49.7	50.1	50.5	50.9	51.4	51.8
Short Circuit Current-I sc (A)	10.46	10.50	10.54	10.57	10.60	10.65
Module Efficiency η m (%)	20.5	20.8	21.0	21.3	21.5	21.8
STC: Irrdiance 1000W/m2, Cell Temperature 25°C, Air Mas	s AM1.5.	*Measuring tole	ance: ±3%.			

51C: Irrdiance Touow/m2, Cell Temperature 25°C, Air Mass AMT.5.	-Measuring tolerance: ±5%.
Electrical characteristics with different powe	r bin (reference to 10% Irradiance ratio)

Total Equivalent power -PMAX (Wp)	437	442	447	453	458	463
Maximum Power Voltage-VMPP (V)	41.8	42.1	42.5		43.2	43.6
Maximum Power Current-IMPP (A)	10.45	10.49	10.53	10.56	10.60	10.64
Open Circuit Voltage-Voc (V)	49.7	50.1	50.5	50.9	51.4	51.8
Short Circuit Current-Isc (A)	11.14	11.18	11.22	11.26	11.29	11.34
Irradiance ratio (rear/front)			10	%		
Power Riforiality 65+1095						

ELLETTIC IL DATITICITOCITY						
Maximum Power-P MAX (Wp)	312	316	320	323	327	332
Maximum Power Voltage-VMPP (V)	47.1	47.5	47.9	48.2	48.7	49.1
Maximum Power Current-IMPP (A)	8.43	8.46	8.49	8.52	8.54	8.58
Open Circuit Voltage-Voc (V)	39.0	39.3	39.6	39.9	40.3	40.6
Short Circuit Current-Isc (A)	8.01	8.04	8.07	8.09	8.12	8.16

B-B

MECHANICAL DATA	
Solar Cells	Topcon Bifacial
No. of cells	144cells
Module Dimensions	1762×1134×30 mm (69.37×44.65×1.18 inches)
Weight	21.8kg (48.06 lb)
Front Glass	3.2 mm (0.12inches), High Transmission, AR Coated Heat Strengthened Glass
Encapsulant material	EVA/POE
BackSheet	Black Grid Transparent Backsheet
Frame	30mm (1.18 inches) Anodized Aluminium Alloy, Black
J-Box	IP 68 rated
Cables	Photovoltaic Technology Cable 4.0mm² (0.006 inches²), Landscape: N 1100 mm /P 1100 mm (43.31/43.31 inches)

Connector	MC4 EVo2		
Fire Type	Type 1 or Type 2		
TEMPERATURE RATINGS		MAXIMUMRATINGS	
NOCT (Nominal Operating Cell Temperature)	43°C (±2°C)	Operational Temperature	-40~+85°C

- 0.25%/°C Temperature Coefficient of Isc 0.04%/°C

MAXIMUMRATINGS	
Operational Temperature	-40~+85°C
Maximum System Voltage	1500V DC (IEC)
Max Series Fuse Rating	20A

WARRANTY

25 year Product Workmanship Warranty 25 year Power Warranty 1% first year degradation 0.4% Annual Power Attenuation

PACKAGING CONFIGUREATION Modules per box: 36 pieces Modules per 40' container: 828 pieces

CAUTION: READ SAFETY AND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT. © 2023 Trina Solar Co.,Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice.

www.trinasolar.com

Tesla Solar Inverter

with Site Controller

Tesla Solar Inverter completes the Tesla home solar system, converting DC power from solar to AC power for home consumption. Tesla's renowned expertise in power electronics has been combined with robust safety features and a simple installation process to produce an outstanding solar inverter that is compatible with both Solar Roof and traditional solar panels. Once installed, homeowners use the Tesla mobile app to manage their solar system and monitor energy consumption, resulting in a truly unique ecosystem experience.

KEY FEATURES

- Built on Powerwall technology for exceptional efficiency and reliability
- Wi-Fi, Ethernet, and cellular connectivity with easy over-the-air updates
- Designed to integrate with Tesla Powerwall and Tesla App
- 0.5% revenue-grade metering for Solar Renewable Energy Credit (SREC) programs included

Tesla Solar Inverter Technical Specifications

Electrical Specifications: Output (AC)

Model Number 1538000-xx-y Output (AC)1 3.8 kW 7.6 kW 5 kW 5.7 kW **Nominal Power** 5,000 W 7,600 W 3,800 W 5,700 W 6,000 VA 7,680 VA **Maximum Apparent Power** 3,840 VA 5,040 VA **Maximum Continuous Current** 16 A 21 A 24 A 32 A **Breaker (Overcurrent Protection)** 40 A 20 A 30 A 30 A

Nominal Power Factor 1 - 0.9 (leading / lagging

THD (at Nominal Power) <5%

Electrical Specifications: Input (DC)

MPPT

4

Input Connectors per MPPT 1-2-1-2

Maximum Input Voltage 600 VDC

DC Input Voltage Range 60 - 550 VDC DC MPPT Voltage Range 60 - 480 VDC¹

Maximum Current per MPPT (I_{MP}) 13 A²
Maximum Short Circuit Current per 17 A²

MPPT (I_{sc})

¹Maximum current.

 2 Where the DC input current exceeds an MPPT rating, jumpers can be used to allow a single MPPT to intake additional DC current up to 26 A I $_{\rm MP}$ / 34 A I $_{\rm sc}$.

Performance Specifications Peak Efficiency 98.6% at 240 V CEC Efficiency 98.0% at 240 V

Allowable DC/AC Ratio 1.7

Customer Interface Tesla Mobile App

Internet Connectivity Wi-Fi (2.4 GHz, 802.11 b/g/n), Ethernet, Cellular (LTE/4G)³

Revenue Grade Meter Revenue Accurate (+/- 0.5%)

AC Remote Metering Support Wi-Fi (2.4 GHz, 802.11 b/g/n), RS-485

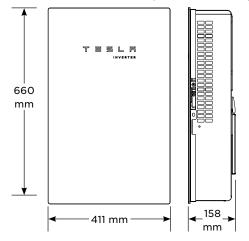
Protections Integrated arc fault circuit

integrated are radii circuit integrated are radii circuit

Supported Grid Types 60 Hz, 240 V Split Phase

Warranty 12.5 years

³Cellular connectivity subject to network operator service coverage and signal strength.


May 12, 2023 Tesla Solar Inverter and Solar Shutdown Device Datasheet 2

Tesla Solar Inverter Technical Specifications

Mechanical Specifications

Dimensions

660 mm x 411 mm x 158 mm (26 in x 16 in x 6 in)

Weight 52 lb⁴

Mounting Options Wall mount (bracket)

Environmental Specifications

Operating Temperature

-30°C to 45°C (-22°F to 113°F)⁵

Operating Humidity (RH)

Up to 100%, condensing

Storage Temperature
Maximum Elevation

-30°C to 70°C (-22°F to 158°F) 3000 m (9843 ft)

Environment

Indoor and outdoor rated

Enclosure Rating

Type 3R

Ingress Rating

IP55 (Wiring compartment)

Pollution Rating

PD2 for power electronics and terminal wiring

compartment, PD3 for all other components

< 40 db(A) nominal, < 50 db(A) maximum

⁵Performance may be de-rated to 6.2 kW at 240 V when operating at temperatures

greater than 45°C.

Operating Noise @ 1 m

Compliance Information

Grid Certifications

UL 1741, UL 1741 SA, UL 1741 SB, UL 1741 PCS,

IEEE 1547-2018, IEEE 1547.1

Safety Certifications

UL 1741 PVRSS, UL 1699B, UL 1998 (US), UL 3741

Emissions

EN 61000-6-3 (Residential), FCC 47CFR15.109 (a)

Tesla Solar Inverter and Solar Shutdown Device Datasheet

⁴Door and bracket can be removed for a mounting weight of 37 lb.

Product data sheet Characteristics

D222NRB SWITCH FUSIBLE GD 240V 60A 2P NEMA3R

Product availability: Stock - Normally stocked in distribution facility

Main	
Product	Single Throw Safety Switch
Current Rating	60 A
Certifications	UL listed file E2875
Enclosure Rating	NEMA 3R
Disconnect Type	Fusible disconnect switch
Factory Installed Neutral	Neutral (factory installed)
Short Circuit Current Rating	100 kA maximum depending on fuse H, K or R
Mounting Type	Surface
Number of Poles	2
Electrical Connection	Lugs
Duty Rating	General duty
Voltage Rating	240 V AC
Wire Size	AWG 12AWG 3 aluminium AWG 14AWG 3 copper

Complementary

Width	189.23 mm (7.45 in)
Height	377.95 mm (14.88 in)
Depth	123.70 mm (4.87 in)
Tightening torque	3.95 N.M (35 lbf.in) 0.000.01 in² (2.085.26 mm²) AWG 14AWG 10) 3.95 N.M (35 lbf.in) AWG 14AWG 10) 5.08 N.M (45 lbf.in) 0.01 in² (8.37 mm²) AWG 8) 5.08 N.M (45 lbf.in) 0.020.03 in² (12.321.12 mm²) AWG 6AWG 4) 5.65 N.m (50 lbf.in) 0.04 in² (26.67 mm²) AWG 3)

Ordering and shipping details

Category	00106 - D & DU SW,NEMA3R, 30-200A	
Discount Schedule	DE1A	
GTIN	00785901460640	
Package weight(Lbs)	3.74 kg (8.25 lb(US))	
Returnability	Yes	
Country of origin	US	

Offer Sustainability

Office Oddital lability	
Sustainable offer status	Green Premium product
California proposition 65	WARNING: This product can expose you to chemicals including: Lead and lead compounds which is known to the State of California to cause Carcinogen & Reproductive harm. For more information go to www.p65warnings.ca.gov
REACh Regulation	REACh Declaration
REACh free of SVHC	Yes
EU RoHS Directive	Compliant EEU RoHS Declaration
Mercury free	Yes
RoHS exemption information	₽¥Yes
China RoHS Regulation	☑ China RoHS Declaration
Environmental Disclosure	Product Environmental Profile
Circularity Profile	No need of specific recycling operations

Jan 5, 2020

Life Is On Schneider

4

Contractual warranty

Warranty	18 months
rran anty	10 11011110

2 Life Is On Schneider

July 21, 2021

Everest Solar Systems LCC 2835 La Mirada Dr, Suite A Vista, CA 92081 TEL: (760) 301-5300

Attn.: Everest Solar - Engineering Department

Re: Report # 20-02753vHG.01 – Everest Solar CrossRail - 44-X Dual Rail System for Gable and Hip Roofs Subject: Engineering Certification for the State of Colorado

PZSE, Inc. – Structural Engineers has provided engineering and span tables for the Everest Solar CrossRail, as presented in PZSE Report # 20-02753vHG.01, "Engineering Certification for the Everest Solar CrossRail - Dual Rail System for Gable and Hip Roofs". All information, data, and analysis therein are based on, and comply with, the following building codes and typical specifications:

Building Codes:

- 1. ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures, by American Society of Civil Engineers
- 2. 2018 International Building Code, by International Code Council, Inc.
- 3. 2018 International Residential Code, by International Code Council, Inc.
- 4. AC428, Acceptance Criteria for Modular Framing Systems Used to Support Photovoltaic (PV) Panels, November 1, 2012 by ICC-ES
- 5. Aluminum Design Manual 2015, by The Aluminum Association, Inc.
- 6. ANSI/AWC NDS-2018, National Design Specification for Wood Construction, by the American Wood Council

Design Criteria: Risk Category II

Seismic Design Category = A - E Exposure Category = B, C & D

Basic Wind Speed (ultimate) per ASCE 7-16 = 95 mph to 200 mph

Ground Snow Load = 0 to 100 (psf)

This letter certifies that the loading criteria and design basis for the Everest Solar CrossRail Span Tables are in compliance with the above codes.

If you have any questions on the above, do not hesitate to call.

Prepared by: PZSE, Inc. – Structural Engineers Roseville, CA

1478 Stone Point Drive, Suite 190, Roseville, CA 95661
T 916.961.3960 F 916.961.3965 W www.pzse.com
Experience | Integrity | Empowerment

October 7, 2021

K2 Systems 2835 La Mirada Dr, Suite A Vista, CA 92081 TEL: (760) 301-5300

Attn.: K2 Systems - Engineering Department

Re: Report # 20-02753vMS.01 – K2 Systems CrossRail - 44-X Dual Rail System for Monoslope Roofs Subject: Engineering Certification for the State of Colorado

PZSE, Inc. – Structural Engineers has provided engineering and span tables for the K2 Systems CrossRail, as presented in PZSE Report # 20-02753vMS.01, "Engineering Certification for the K2 Systems CrossRail - Dual Rail System for Monoslope Roofs". All information, data, and analysis therein are based on, and comply with, the following building codes and typical specifications:

Building Codes:

- 1. ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures, by American Society of Civil Engineers
- 2. 2018 International Building Code, by International Code Council, Inc.
- 3. 2018 International Residential Code, by International Code Council, Inc.
- 4. AC428, Acceptance Criteria for Modular Framing Systems Used to Support Photovoltaic (PV) Panels, November 1, 2012 by ICC-ES
- 5. Aluminum Design Manual 2015, by The Aluminum Association, Inc.
- 6. ANSI/AWC NDS-2018, National Design Specification for Wood Construction, by the American Wood Council

Design Criteria: Risk Category II

Seismic Design Category = A - E Exposure Category = B, C & D

Basic Wind Speed (ultimate) per ASCE 7-16 = 95 mph to 200 mph

Ground Snow Load = 0 to 100 (psf)

This letter certifies that the loading criteria and design basis for the K2 Systems CrossRail Span Tables are in compliance with the above codes.

If you have any questions on the above, do not hesitate to call.

Prepared by:
PZSE, Inc. – Structural Engineers
Roseville, CA

DIGITALLY SIGNED

1478 Stone Point Drive, Suite 190, Roseville, CA 95661 T 916.961.3960 F 916.961.3965 W www.pzse.com

Experience | Integrity | Empowerment

Fire Rating

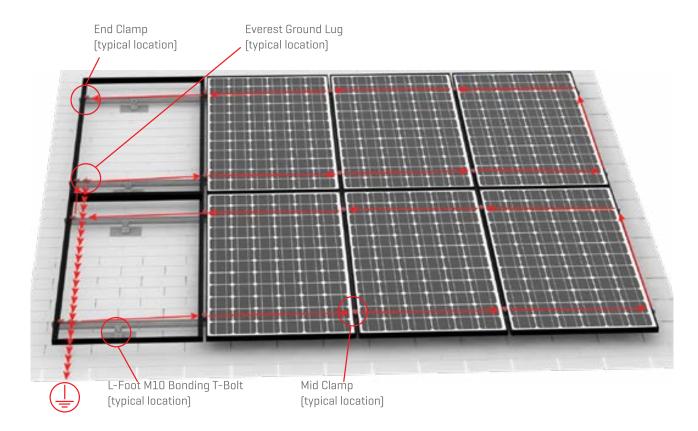
The CrossRail System has undergone fire performance testing in accordance with UL 2703, Fire Performance. A System Class A fire rating is achieved when using CrossRail 44-X/48-X/48-XL under the following conditions:

- ▶ Roof slope of 2/12" rise per linear foot or greater
- ▶ Used in combination with a UL 1703 Listed module with a fire performance rating of Type 1, Type 2, or Type 3. Consult the module manufacturer for specific fire performance rating information.
- CrossRail may be mounted using any stand-off height to maintain the Class A fire rating. Always consult the module manufacturer's installation instructions to ensure your installation is in compliance with their UL 1703 Listing.
- ▶ The results of the racking system do not improve a roof covering Class rating.

All documentation can be found on UL's Online Database as well as K2 Systems' website.

7

Bonding and Grounding


Appropriate means of bonding and grounding are required by regulation. The information provided in this manual shall always be verified with local and national building codes.

Everest Solar Systems has obtained a UL 2703 system listing from Underwriter's Laboratories (UL).

A sample bonding path diagram is shown in Figure 1 below. Your specific installation may vary, based upon site conditions and your AHJ's requirements.

Each electrical connection has been evaluated to a maximum fuse rating of 30A. At least one ground lug per row of modules must be used to ground all strings within each sub-array, although additional may be used for redundancy. When installed per these installation instructions, all connections meet the requirements of NEC 690.43.

This racking system may be used to ground and/or mount a PV module complying with UL 1703 only when the specific module has been evaluated for grounding and/or mounting in compliance with the included instructions.

Compatible Modules

CS3U-xxxP

CS3U-xxxMS

CS3W-xxxP

CS3U-xxxPB-AG

CS3U-xxxMB-AG

CS3W-xxxPB-AG

CS1H-xxxMS

UL/NRTL Listed Aptos Solar Modules:	CONTINUED - Canadian Solar Inc Modules:	CONTINUED - Hanwha Q Cells Modules:
· DNA-120-MF26-XXXW	· CS6K-xxxM	· Q.PEAK DUO L-G6.2 xxx
· DNA-144-MF26-XXXW	· CS6K-P-FG DYMOND	· Q.PEAK DUO L-G6.3 xxx
· DNA-120-BF23-XXXW		· Q.PLUS DUO L-G5 xxx
· DNA-120-MF23-XXXW	UL/NRTL Listed CertainTeed Modules:	· Q.PLUS DUO L-G5.1 xxx
· DNA-144-BF23-XXXW	· CTXXXHC11-04	· Q.PLUS DUO L-G5.2 xxx
· DNA-144-MF23-XXXW	· CTXXXHCOO-O4	· Q.PLUS DUO L-G5.3 xxx
	· CTxxxHC11-06	· Q.PEAK DUO L-G5.2 xxx
UL/NRTL Listed Axitec Modules:		· Q.PEAK DUO L-G5.3 xxx
· AC-xxP/156-60S	UL/NRTL Listed ET Solar Modules:	· Q.PEAK L-G4.2 xxx
· AC-xxxM/156-60S	· ET-M660xxxBB	· Q.PEAK L-G4.1 xxx
· AC-xxxP/60V		· Q.PLUS L-G4.2 xxx
· AC-xxxP/60xV	UL/NRTL Listed Hansol Modules:	· Q.PLUS L-G4.1 xxx
· AC-xxxP/60S	· UB-AN1 Black 270-300	· Q.PLUS L-G4 xxx
· AC-xxxP/60x	· UBAN1 Silver 270-300	· Q.PEAK DUO BLK G6+/SC xxx
· AC-xxxMH/120S	· UD-AN1 330-360	· Q.PEAK DUO G5/SC xxx
· AC-xxxM/60V		· Q.PEAK DUO BLK G5/SC xxx
· AC-xxxM/60xV	UL/NRTL Listed Hanwha Q Cells Modules:	· Q.Plus BFR-G4.1xxx
· AC-xxxMH/120V	· Q.PEAK- G4.1/MAx xxx	· Q.Pro BFR-G4.1xxx
· AC-xxxM/60S	· Q.PEAK BLK G4.1 xxx	· Q.Pro-G4.1/SCxxx
· AC-xxxM/60x	· Q.PRO G4 xxx	· Q.PLUS BFR G4.1 xxx
· AC-xxxP/156-72S	· Q.PLUS G4 xxx	· Q.PRO BFR G4 xxx
· AC-XXXP/72V	· Q.PEAK-G4.1/TAA xxx	· Q.PRO BFR G4.1 xxx
· AC-XXXP/72XV	· Q.PEAK BLK G4.1/TAA xxx	· Q.PRO BFR G4.3 xxx
· AC-XXXP/72S	· Q.PLUS BFR G4.1/TAA xxx	· Q.PEAK-G4.1 xxx
· AC-XXXP/72X	· Q.PLUS BFR G4.1/MAx xxx	· Q. PEAK DUO BLK G6+/TS XXX
· AC-XXXMH/144S	· B.LINE PLUS BFR G4.1 xxx	· Q.PEAK DUO G5/TS-XXX
· AC-XXXM/72V	· B.LINE PRO BFR G4.1 xxx	· Q.PEAK DUO BLK G6/TS XXX
· AC-XXXM/72XV	· Q.PEAK DUO-G5 xxx	· Q.PEAK DUO G6/TS-XXX
· AC-XXXMH/144V	· Q.PEAK DUO BLK-G5 xxx	· Q.PEAK DUO G6+/TS-XXX
· AC-XXXM/72S	· Q.PEAK DUO-G8 xxx	· Q.PEAK DUO ML-G9 XXX
· AC-XXXM/72X	· Q.PEAK DUO BLK-G8 xxx	· Q.PEAK DUO ML-G9.2 XXX
	· Q.PEAK DUO-G7 xxx	· Q.PEAK DUO ML BLK-G9 XXX
► UL/NRTL Listed Boviet Modules:	· Q.PEAK DUO BLK-G7 xxx	· Q.PEAK DUO ML BLK-G9.2 XXX
· BVM6612M 72-Cell Mono	· Q.PEAK DUO G7.2 xxx	· Q.PEAK DUO XL-G9 XXX
	· Q.PEAK DUO-G6 xxx	· Q.PEAK DUO XL-G9.2 XXX
► UL/NRTL Listed Canadian Solar Inc. Modules:	· Q.PEAK DUO BLK-G6 xxx	Q.PEAK DUO XL BLK-G9 XXX
· CS6U-xxx	· Q.PEAK DUO BLK-G6+ xxx	· Q.PEAK DUO XL BLK-G9.2 XXX
· CS6K-xxx	· Q.PEAK DUO-G6+ xxx	· Q.PEAK DUO XL BLK-G9.3 XXX
· CS6X-xxx	· Q.PEAK DUO-G8+ xxx	· Q.PEAK DUO XL -G9.3 XXX
· CS6P-xxx	· Q.PEAK DUO BLK-G8+ xxx	· Q.PEAK DUO ML -G9.3 XXX
· CS3K-xxxP	· Q.PEAK DUO L-G8.3 xxx	· Q.PEAK DUO ML BLK -G9.3 XXX
· CS3K-xxxMS	· Q.PEAK DUO L-G8.2 xxx	· Q.PEAK DUO ML -G9 XXX
	•	•

Q.PEAK DUO L-G8.1 xxx

Q.PEAK DUO L-G7.3 xxx

Q.PEAK DUO L-G7.2 xxx

Q.PEAK DUO L-G7 xxx

Q.PEAK DUO L-G6 xxx

· Q.PEAK DUO L-G8 xxx

Q.PEAK DUO L-G7.1 xxx ▶ UL/NRTL Listed Hyundai Modules:

> · HiS-MxxxMG · HiS-MxxxMI

· Q.PEAK DUO ML -G9+ XXX · Q.PEAK DUO BLK ML -G9+ XXX

· Q.PEAK DUO BLK ML -G9 XXX

CONTINUED - Hyundai Modules:	CONTINUED - LG Electronics Inc. Modules:	CONTINUED - Longi Modules:
· HiS-MxxxTI	· LGXXXQ1K-N5	· LR6-60BP-xxxM
· HiS-MxxxRI	· LGXXXN1K-L5	· LR6-72HBD-xxxM
· HiS-SxxxRI	· LGXXXN2W-L5	· LR6-60-xxxM
· HiS-MxxxRG	· LGXXXN2T-L5	· LR6-60BK-xxxM
	· LGXXXN1W-L5	· LR6-60PE-xxxM
 UL/NRTL Listed Itek Modules 	· LGXXXN1T-L5	· LR6-60PB-xxxM
· IT-xxx-SE	· LGXXXA1C-V5	· LR6-60PH-xxxM
· Hipro TP672M-xxx	· LGXXXA1K-V5	· LR6-60HPB/HIB-xxxM
	· LGXXXM1C-N5	· LR6-60HPH/HIH-xxxM
UL/NRTL Listed JA Solar Modules:	· LGXXXM1K-L5	· LR6-72-xxxM
· JAP6(DG)	· LGXXXQ1C-A6	· LR6-72BK-xxxM
· JAM6(K)-60-xxx/4BB	· LGXXXQ1K-A6	· LR6-72HV-xxxM
	· LGXXXQAC-A6	· LR6-72PE-xxxM
UL/NRTL Listed Jinko Solar Modules::	· LGXXXQAK-A6	· LR6-72PB-xxxM
· JKMxxxPP-72-DV	· LGXXXN1C-A6	· LR6-72PH-xxxM
· JKMxxxPP-60-DV	· LGXXXN1K-A6	· LR6-72HPH/HIH-xxxM
· JKMxxxM-60HBL	· LGXXXN2W-E6	· LR6-72BP-xxxM
· JKMxxxM-72HL-V	· LGXXXN2W-E6.AW5	· LR6-72HBD/HIBD-xxxM
· JKMxxxM-72HL-TV	· LGXXXN2T-E6	· LR6-60BP-xxxM
· JKMxxx-P-60	· LGXXXN1K-B6	· LR6-60HBD/HIBD-xxxM
· JKMxxxM-72HL4-TV	· LGXXXQ1C-A6	· LR4-60HPH/HIH-xxxM
	· LGXXXQ1K-A6	· LR4-60HPB/HIB-xxxM
UL/NRTL Listed Kyocera Modules:	· LGXXXQAC-A6	· LR4-72HPH/HIH-xxxM
· KUxxxMCA	· LGXXXQAK-A6	· LR4-72HBD/HIBD-xxxM
	· LGXXXN1C-A6	· LR4-72HBD/HIBD-xxxM
UL/NRTL Listed LG Electronics Inc. Modules:	· LGXXXN1K-A6	
· LGxxxS1C-G4	· LGXXXN2W-E6	UL/NRTL Listed Lumos Modules:
· LGxxxN1C-G4	· LGXXXN2W-E6.AW5	· LSxxxx-60M-B/C
· LGxxxS2WG4	· LGXXXN2T-E6	
· LGxxxN1K-G4	· LGXXXN1K-B6	UL/NRTL Listed Luxor Solar Modules:
· LGxxxN2W-G4	· LGXXXA1C-A6	· Lx-xxxP
· LGxxxN1K-A5	· LGXXXM1C-A6	· Lx-xxxM
· LGxxxQ1C-V5	· LGXXXM1K-A6	
· LGxxxQ1K-V5		UL/NRTL Listed Mission Solar Modules:
· LGxxxN2W-A5	► UL/NRTL Listed Longi Modules:	· MSExxxSB1J
· LGxxxS2W-A5	· LR6-72-xxxM (xxx=320-350)	· MSExxxS05T
· LGxxxN2T-A5	· LR6-72HV-xxxM (xxx=320-350)	· MSExxxS04J
· LGxxxQ1C-A5	· LR6-72BK-xxxM (xxx=320-350)	· MSExxxSQ6S
· LGxxxQ1K-A5	· LR6-72PE-xxxM (xxx=340-380)	· MSExxxS06J
· LGxxxN2W-V5	· LR6-72PH-xxxM (xxx=340-380)	· MSExxxSQ4S
· LGxxxN1C-V5	· LR6-72PB-xxxM (xxx=340-380)	· MSExxxSQ5T
· LGxxxN1W-V5	· LR6-72HPB-xxxM (xxx=360-385)	· MSExxxSQ5K
· LGxxxN1K-V5	· LR6-60-xxxM [xxx=270-300]	· MSExxxSQ8T
· LGXXXN2W-V5	· LR6-60HV-xxxM [xxx=270-300]	· MSExxxSQ8K
· LGXXXN1C-V5	· LR6-60BK-xxxM [xxx=270-300]	· MSExxxSQ9J
· LGXXXN1W-V5	· LR6-60PE-xxxM [xxx=280-320]	· MSExxxSQ9S
· LGXXXN1K-V5	· LR6-60PH-xxxM (xxx=280-320)	· MSExxxSR8T
· LGXXXN2T-V5	· LR6-60PB-xxxM (xxx=280-320)	· MSExxxSR8K
· LGXXXN1C-N5	· LR6-72BP-xxxM	· MSExxxSR9S
· LGXXXQ1C-N5		

Compatible Modules continued

K2's CrossRail System was tested with the following:

	_	
► CONTINUED - Mission Solar Modules:	► CONTINUED - Sanyo Electric Co Ltd of	► UL/NRTL Listed Sunpreme Modules
· MSExxxSB1J	Panasonic Group Modules:	· GxB-xxx
· MSExxxSX5T	· VBHNxxxSA16	· GxB-xxxSM
· MSExxxSX5K	· VBHNxxxSA17	· GxB-xxxSL
· MSExxxSX6S	· VBHNxxxSA18	
· MSExxxSX6W	· VBHNxxxKA01	UL/NRTL Listed Sunspark Modules:
	· VBHNxxxKAO3	· SST-275-300M
UL/NRTL Listed Panasonic Modules:	· VBHNxxxKA04	· SMX-250-265P
· VBHNxxxSA16	· MSExxxSX6W	· SST-xxxM 60 cell
· VBHNxxxKA01		· SST-xxxM 72 cell
· VBHNxxxKA03	UL/NRTL Listed Seraphim Modules:	· SST-xxxMB 60 cell
· VBHNxxxKA04	· SEG-XXX-6MA-HV	· SST-XXXM3B-60/72
· VBHNxxxSA17	· SEG-XXX-BMA-HV	· SST-XXXM3-60/72
· VBHNxxxSA18		· SST-XXXM3B-60/72
· VBHNxxxSA17E	UL/NRTL Listed Silfab Modules:	
· EVPVxxx	· SLAxxxM	UL/NRTL Listed S-Energy Modules:
· EVPVxxxK	· SLG-M-xxx	· SN15-60PAE/PCE-xxxV
	· SLA-x-xxx	· SN10-60PAE/PBE/PCE-xxxV
UL/NRTL Listed Peimar Modules:	· SLG-x-xxx	· SN15-60MAE/MCE-xxxV
· SGxxxP-(BF)	· SIL-xxx BL	· SN10-60MAE/MCE-xxxV
· SGxxxP	· SIL-xxx HL	· SNxxxM-10T(SN60)
· SGxxxM-(BF)	· SIL-xxx NL	· SN15-72PAE/PCE-xxxV
· SGxxxM	· SIL-xxx ML	· SN10-72PAE/PBE/PCE-xxxV
	· SIL-xxx NT	· SN15-72MAE/MCE-xxxV
UL/NRTL Listed Phono Solar Modules:	· SIL-xxx BK	· SN10-72MAE/MBE/MCE-xxxV
· PSxxxMG-20/U	· SIL-xxx NU	· SN20-60MAE/MBE/MCE-xxxV
· PSxxxPG-20/U	· SIL-xxx NX	· SN25-60MAE/MCE-xxxV
· PSxxxM-20/U		· SC20-60MAE/MBE/MCE-xxxV
· PSxxxMH-20/U	UL/NRTL Listed Sharp Modules:	· SC25-60MAE/MCE-xxxV
	· NU-SCxxx	· SN20-72MAE/MBE/MCE-xxxV
UL/NRTL Listed Prism Solar Modules:	· NU-SAxxx	· SN25-72MAE/MCE-xxxV
· Bi48 xxx Bifacial		· SC20-72MAE/MBE/MCE-xxxV
· Bi60 xxx Bifacial	UL/NRTL Listed Solaria Modules:	· SC25-72MAE/MCE-xxxV
	· PowerxT® -xxxR-PD	· SD25-60BDE-xxxV
UL/NRTL Listed REC Modules:	· PowerxT® -xxxR-BD	· SD25-72BDE-xxxV
· RECxxxTP2 BLK2	· PowerxT® XXXR-PM	
· RECxxxTPS 72		 UL/NRTL Listed Talesun Modules
· RECxxxTP2S 72 XV	 UL/NRTL Listed Solarworld Modules 	· Hipro TP660M-xxx
· RECxxxTP2SM 72 XV	"Sunmodule":	· Hipro TP672M-xxx
· RECxxxTP2SM 72	· Plus SW XXX Mono	
· RECxxx NP	· Plus SW XXX Poly	UL/NRTL Listed Trina Solar Modules:
· RECxxx NP Black		· TSM-xxxDE14A
· RECxxxAA	UL/NRTL Listed Soluxtec Modules:	· TSM-xxxDD05A.08
· RECxxxAA Black	· FR xxx Wp	· DUOMAX SPECS 1. PEG14
	· Power Slate 54 Mono Dark Series	· DUOMAX SPECS 2. PEG5
 UL/NRTL Listed Sanyo Electric Co Ltd of 	· Power Slate 54 Mono Series	· DUOMAX SPECS 3. PEG5.07
Panasonic Group Modules:		· DUOMAX SPECS 4. PDG5
· VBHNxxxSA16	UL/NRTL Listed SunPower Modules:	· TSM-DE15H(II)
· VBHNxxxSA17	· SPR-E19-xxx	· TSM-DE15M(II)
· VBHNxxxSA18	· SPR-E20-xxx	· TSM-DD06M.05(II)

Compatible Modules continued

K2's CrossRail System was tested with the following:

- CONTINUED Trina Solar Modules:
- · TSM-DD06H.05(II)
- · TSM-DD06M.t5(II)
- · TSM-DD06H.T5(II)
- · TSM-PE15H
- · TSM-DEG15HC.20(II)
- · TSM-DEG15MC.20(II)
- · TSM-DEG6HC.20(II)
- · TSM-DEG6MC.20(II)
- · TSM-xxxDE15V(II)
- · TSM-xxxDE19
- · TSM-xxxDEG15VC.20(II)
- · TSM-xxxDEG19C.20
- ► UL/NRTL Listed V Energy Modules:
- · Series 200 PV
- ► UL/NRTL Listed Yingli Solar Modules:
- · YL-xxxP-29b
- · YL-xxx-35b

11

Contents

Project overview	Ц
Roof 1	6
Assembly plan	8
Results	10
Structural analysis report	13
Bill of material	17

$\langle \rangle$

About us

K2 Systems. Innovative mounting system from a strong team.

With sophisticated product innovations and a deep customer focus, K2 Systems is the engineering leader for all your mounting system needs. We are market leaders with more than 20 GW installed worldwide. Our systems are designed in our own product development department and we continually optimize and adapt mounting systems to the ever changing market.

A knowledgeable and friendly team

Just like a mountain climbing team, K2 Systems is built on mutual trust. This applies to our customer service as well as within the company itself, because we believe a trusting partnership leads to successful photovoltaic projects.

Our employees place total focus on the needs and wishes of our customer. This is true in all company departments.

10 locations and worldwide sales network

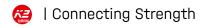
In our international team, everyone works together to provide customers with competent, comprehensive and entirely personalized service.

This is especially true in the constant training our employees undergo with regards to product optimization, quality assurance, or innovations in construction techniques.

Quality management and certificates

K2 Systems stands for outstanding quality standards, the highest quality products and sophisticated product innovations. Our customers and business partners deeply appreciate all of these factors. Independent authorities such as UL and Intertek have tested, confirmed, and certified our skills and components. External authorities are not the only ones to have put K2 Systems to the test. Our internal quality control ensures that all our products are subject to a constant review process.

These measurements all ensure the outstanding quality standards that exemplify products from K2 Systems. All our products are German engineered but tailored for the US and Mexico markets. Our customers can rely on our high quality and appreciate the fact that we offer a 25-year product warranty on all our components.



Product guarantee

K2 Systems offers a 25-year product warranty on all products in its portfolio. The use of high quality materials and a three-level quality inspection ensures these standards.

In a nutshell

As roof-top specialists, we offer effective and economical solutions for roofs all around the world and provide professional, fast and reliable support for our customers in the solar industry.

Project overview

Roofs

Roof	System	Module	Height	Quantity	Total power
Roof 1 Composite Shingles	Shared Rail	TSM-415NE09RC.05 69×45×1 in 415 Wp	10.0 ft	14	5.81 kWp

Total 14 5.81 kWp

Project information

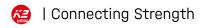
Address 718 Remington St, Fort Collins, CO 80524, USA

Customer Jordan Wiswell

Load settings

Design method ASCE 7-16
Snow load on ground level 35.00 psf
Risk Category II - Normal
Wind speed 140.0 mph

Material values


Aluminium EM-AW 6063 (EP, ET, ER/B) T66

Elastic module E = 70.000 N/mm^2 Shear module G = 26.923 N/mm^2 Density g = 2.700 kg/m^3 Thermal coefficient α_T = $2.3e^{-5}$ Yielding strength $f_{o,k}$ = 200 N/mm^2 Ultimate strength $f_{u,k}$ = 245 N/mm^2

THE PROJECT IS VERIFIED.

The selected mounting system can be installed as planned. Thank you for choosing a K2 mounting system.


Wiswell Pergola

Project information

Address 718 Remington St, Fort Collins, CO 80524, USA

Customer Jordan Wiswell Author Andrew Lyle

Roofs | Roof 1 | Assembly plan

Base Rails

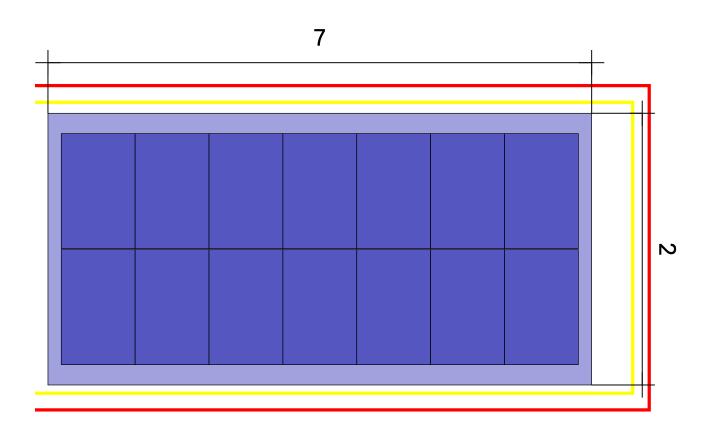
	Whole	Whole Rails		Rail cutting		
Туре	Total Rail Length	Quantity 13.83 ft	Part of Rail	Length	Rest	
3*A	26.021 ft	1*13.83 ft	13.833	12.188 from 13.833		1.612

1 cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Fastener Spacing

Module	Array	Distance	maximum cantilever length	maximum fastener spacing
1	Edge (2")	2.79 ft	1.358	2.802
1	Center (1)	2.79 ft	1.358	2.802
1	Edge (2)	2.79 ft	1.358	2.802
1	Corner (3")	2.79 ft	1.358	2.802
1	Corner (3)	2.79 ft	1.358	2.802
1	Edge (2") (exposed)	2.79 ft	1.358	2.802
1	Center (1) (exposed)	2.79 ft	1.358	2.802
1	Edge (2) (exposed)	2.79 ft	1.358	2.802
1	Corner (3") (exposed)	2.79 ft	1.358	2.802

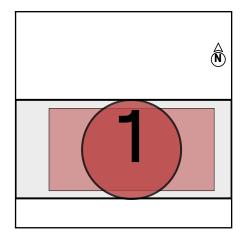

Module arrays

Module array	Width[ft]	Length[ft]	Width in modules	Length in modules
1	7.93	3.54	7	2

Roofs | Roof 1 | Module array 1

Roof (1) Module array 1

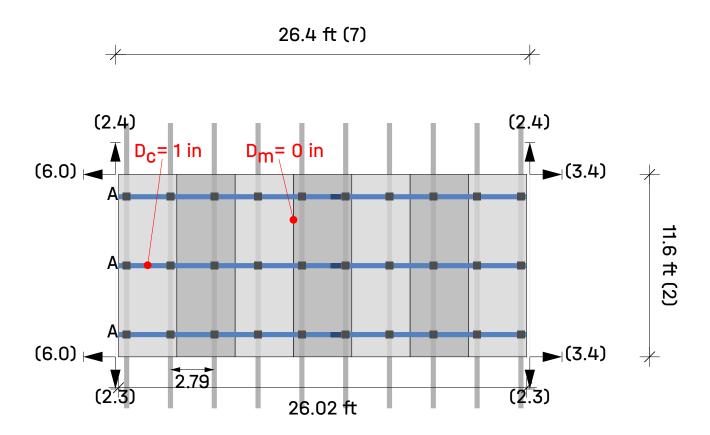
Mounting System


Module

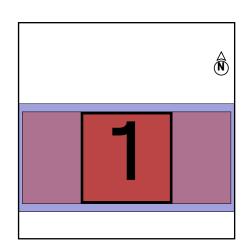
Row spacing

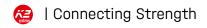
Shared Rail

14(5.81 kWp) x TSM-415NE09RC.05


5.8 ft

Roofs | Roof 1 | Module array 1 | Module blocks





Legend

 $7 \times 2 = 14$

- Fastener
- Mounting rail: 48-X
- Distance to Roof Edge [ft]
- D_C Distance for clamping between modules
- Distance between modules

Results | Roof 1

Roof		System	Module	Height	Quantity	Total power
Roof 1 Compos	ite Shingles	Shared Rail	TSM-415NE09RC.05 69×45×1 in 415 Wp	10.0 fi	14	5.81 kWp

Module

Name TSM-415NE09RC.05

Manufacturer Trina
Output power 415 Wp
Dimensions 69×45×1 in
Weight 47.0 lbm

Components

Fastener EverFlash eComp+SRS Slide Kit, Mill

Base rails 48-X

Loads on modules (module dimensioning)

Array	A-TrA -	ultimate state [psf] serviceability [ps						y [psf]	
	[ft ²]	Pressure ⊥	Pressure II	Uplift _L	Uplift II	Pressure 	Pressure II	Uplift L	Uplift II
Edge (2")	21.49	32.2	4.0	-9.2	0.2	32.2	4.0	-9.2	0.2
Center (1)	21.49	32.2	4.0	-6.0	0.2	32.2	4.0	-6.0	0.2
Edge (2)	21.49	32.2	4.0	-7.2	0.2	32.2	4.0	-7.2	0.2
Corner (3")	21.49	32.2	4.0	-14.0	0.2	32.2	4.0	-14.0	0.2
Corner (3)	21.49	32.2	4.0	-9.5	0.2	32.2	4.0	-9.5	0.2
Edge (2") (exposed)	21.49	32.2	4.0	-14.6	0.2	32.2	4.0	-14.6	0.2
Center (1) (exposed)	21.49	32.2	4.0	-9.8	0.2	32.2	4.0	-9.8	0.2
Edge (2) (exposed)	21.49	32.2	4.0	-11.5	0.2	32.2	4.0	-11.5	0.2
Corner (3") (exposed)	21.49	32.2	4.0	-21.7	0.2	32.2	4.0	-21.7	0.2

Results | Roof 1

Utilization result

		load-bearing capacity		Usab.	Distances		maxim	maximum values	
No.	roof areas	Pr -50/3	CL -[0/]	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[ft]	[ft]	L _{max} [ft]	Fst D _{max} [ft]
1	Edge (2")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1)	38.6	3.4	99.6	29.1	2.792		1.358	2.802
1	Edge (2)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Edge (2") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1) (exposed)	38.6	6.7	99.6	29.1	2.792		1.358	2.802
1	Edge (2) (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802


 ${\rm Pr} \qquad \qquad {\rm Fst} \,\, {\rm D}_{\rm max} \ \ \, {\rm maximum \,\, fastener \,\, spacing}$

F Force

 CL/L_{max} maximum cantilever length

Array Layout

Array	Rows	Columns	Length	Width	Orientation	Total Weight	Racking Weight	Distributed Weight
1	2	7	312.26 in	139.47 in	Portrait	733.44 lbm	75.44 lbm	2.413 psf

Results | Roof 1

Notes

- Ensure rail connectors do not interfere with L-feet or roof attachments. Additional fastners and/or repositioning of their locations may be required.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminum structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding servise life periond, fW, is according to DIN EN 1991-1-4/NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding servise life periond, fS, is according to DIN EN 1991-1-3/ annex D, table 4
- Before installation, Contractor must verify that the system meets all applicable laws, regulations, ordinances, and codes. Contractor shall verify that the roof or other structures to which the system is being attached are capable of carrying the system loads.

General information

Name Wiswell Pergola Mounting System Shared Rail

Location information

Address 718 Remington St, Fort Collins, CO 80524, USA

Ground level 4,989.8 ft

Roof information

Building height 10.0 ft

Roof type Monopitch roof

Roof pitch 7°

min. roof edge distance

Rafter spacing

Set rafter to left edge

No

Rafter spacing left

Set rafter to right edge

No

Rafter spacing right

Rafter spacing right

No

Loads

Design method ASCE 7-16


Wind load

Wind speed V = 140.0 mph

Hurricane prone No.

Manual Topographic Factor approved $K_{zt} = 1.0$

by Engineer of Record

Roof areas

Array	load impact area [ft²]	maxCpe _{21.4}	minCpe _{21.4}	wind pressure [psf]	wind uplift [psf]
Edge (2")	21.49	0.267	-1.567	3.030	-17.795
Center (1)	21.49	0.267	-1.100	3.030	-12.493
Edge (2)	21.49	0.267	-1.267	3.030	-14.387
Corner (3")	21.49	0.267	-2.268	3.030	-25.755
Corner (3)	21.49	0.267	-1.601	3.030	-18.179
Edge (2") (exposed)	21.49	0.267	-1.567	4.545	-26.692
Center (1) (exposed)	21.49	0.267	-1.100	4.545	-18.740
Edge (2) (exposed)	21.49	0.267	-1.267	4.545	-21.581
Corner (3") (exposed)	21.49	0.267	-2.268	4.545	-38.633

Snow load

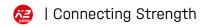
Snow Load on Flat Roofs	\boldsymbol{p}_{f}	= 24.50 psf
ExposureFactor	\mathbf{C}_{e}	= 1.00
Reduction Factor		= 0.99
Slope Factor	\mathbf{C}_{s}	= 1.00
ThermalFactor	\mathbf{C}_{t}	= 1.00
Snow load on ground level	\mathbf{S}_{k}	= 35.000 psf
Snow load on roof	\mathbf{S}_{i}	= 30.000 psf
Environment	Par	tially exposed

Dead Load

Weight of module	G_{M}	= 47.0 lbm
Weight of mounting system per module		= 5.5 lbm
Module area	A_{M}	= 21.49 ft ²

Maximum load on modules (Mounting system dimensioning)

Array	A-TrA -	u	ltimate sta	state [psf] service					ility [psf]		
Allay	[ft ²]	Pressure _	Pressure II	Uplift ⊥	Uplift II	Pro	essure 1	Pressure II	Uplift ⊥	Uplift II	
Edge (2")	21.49	32.201	3.954	-9.222	0.179	3	32.201	3.954	-9.222	0.179	
Center (1)	21.49	32.201	3.954	-6.041	0.179	3	32.201	3.954	-6.041	0.179	
Edge (2)	21.49	32.201	3.954	-7.178	0.179	3	32.201	3.954	-7.178	0.179	
Corner (3")	21.49	32.201	3.954	-13.998	0.179	3	32.201	3.954	-13.998	0.179	
Corner (3)	21.49	32.201	3.954	-9.452	0.179	3	32.201	3.954	-9.452	0.179	
Edge (2") (exposed)	21.49	32.201	3.954	-14.560	0.179	3	32.201	3.954	-14.560	0.179	
Center (1) (exposed)	21.49	32.201	3.954	-9.789	0.179	3	32.201	3.954	-9.789	0.179	
Edge (2) (exposed)	21.49	32.201	3.954	-11.494	0.179	3	32.201	3.954	-11.494	0.179	
Corner (3") (exposed)	21.49	32.201	3.954	-21.725	0.179	3	32.201	3.954	-21.725	0.179	


Max. load on fastener

Array	A-TrA		ultimate s	tate [lbf]				serviceab	ility [lbf]	
Array	[ft ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	I	Pressure L	Pressure II	Uplift ⊥	Uplift II
Edge (2")	21.49	577.397	70.895	-165.358	3.203		577.397	70.895	-165.358	3.203
Center (1)	21.49	577.397	70.895	-108.323	3.203		577.397	70.895	-108.323	3.203
Edge (2)	21.49	577.397	70.895	-128.700	3.203		577.397	70.895	-128.700	3.203
Corner (3")	21.49	577.397	70.895	-251.002	3.203		577.397	70.895	-251.002	3.203
Corner (3)	21.49	577.397	70.895	-169.492	3.203		577.397	70.895	-169.492	3.203
Edge (2") (exposed)	21.49	577.397	70.895	-261.080	3.203		577.397	70.895	-261.080	3.203
Center (1) (exposed)	21.49	577.397	70.895	-175.528	3.203		577.397	70.895	-175.528	3.203
Edge (2) (exposed)	21.49	577.397	70.895	-206.094	3.203		577.397	70.895	-206.094	3.203
Corner (3") (exposed)	21.49	577.397	70.895	-389.546	3.203		577.397	70.895	-389.546	3.203

Resistance Values of Components

Base Rails

Base Rails	A [cm²]	l _y [cm^4]	l _z [cm^4]	W _y [cm³]	W_z [cm ³]
48-X	3.097	0.14	0.19	0.20	0.15

Fastener

Fastener	R _{D,Uplift,Perpendicular} [lbf]	R _{D,Pressure,Perpendicular} [lbf]	R _{D,Pressure,Parallel} [lbf]
EverFlash eComp+SRS Slide Kit, Mill	715.00	705.00	400.00

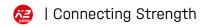
Utilization result


		load-bearing capacity		Usab.	Distances		maxim	maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[ft]	[ft]	L _{max} [ft]	Fst D _{max} [ft]
1	Edge (2")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1)	38.6	3.4	99.6	29.1	2.792		1.358	2.802
1	Edge (2)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Edge (2") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1) (exposed)	38.6	6.7	99.6	29.1	2.792		1.358	2.802
1	Edge (2) (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802

Pr Profile
Fst Fastener
σ Stress
f deflection
F Force

 CL/L_{max} maximum cantilever length

 $Fst \; D_{max} \quad \textbf{maximum fastener spacing}$


BR base rail
Usab. usability
CL Cantilever

Bill of material

Position	Item no.	Item description	Quantity	Weight
1	4000663	CrossRail 48-X 166", Dark	6	47.1 lbm
2	4000386	RailConn CR 48-X,48-XL Struct Set, Dark	3	1.5 lbm
3	4000015	EverFlash eComp+SRS Slide Kit, Mill	30	22.5 lbm
4	4000689-Н	CR MC Dark, 48-50mm, Shared RL 30-47mm, 13mm Hex	26	4.5 lbm
5	4000093	CR EC Dark, 40-47mm, Shared RL 30-40mm	4	0.7 lbm
6	4000609	Shared Rail Clamp Add-On, Slide In, 10mm	26	1.2 lbm
7	4005394	Wire Management Clip, Omega, Black	14	0.1 lbm
8	4000069	Wire Management Clip, TC	28	0.3 lbm
9	4000431	CrossRail Flat EndCap, CR 48-X,48-XL	6	0.1 lbm
10	4000006-H	K2 Ground Lug, 13mm Hex Set	1	0.2 lbm
Total				78.2 lbm

Thank you for choosing a K2 mounting system.

Systems from K2 Systems are quick and easy to install. We hope these instructions have helped. Please contact us with any questions or suggestions for improvement.

Our contact data:

k2-systems.com/en/contact

Our General Terms of Business apply. Please refer to k2-systems.com

K2 Systems LLC

4665 North Avenue Suite I Oceanside, CA 92056 USA +1 760-301-5300 info-us@k2-systems.com k2-systems.com/en-US

04/15/2024

REFERENCE: 718 Remington Street, Fort Collins, CO 80524

To Whom It May Concern:

The following calculations are for the structural engineering design of the PV racking system and attachment and are valid only for the structural information referenced in the stamped plan set. The verification of such info is the responsibility of others. All PV mounting equipment shall be designed and installed per manufacturer's approved installation specifications.

Limitations

Installation of the solar panels must be performed in accordance with manufacturer recommendations. All work performed must be in accordance with accepted industry-wide methods and applicable safety standards. The contractor shall notify AHZ Consulting Engineers, Inc. should any damage, deterioration or discrepancies between the as-built condition of the structure and the condition described in this letter be found. The use of solar panel support span tables provided by others is allowed only where the building type, site conditions, site-specific design parameters, and solar panel configuration match the description of the span tables. The design of the solar panel racking (mounts, ballast, rails, etc.) and electrical engineering are out of the scope of this work. Waterproofing around the roof penetrations is the responsibility of the install contractor. AHZ Consulting Engineers, Inc. assumes no responsibility for improper installation of the solar array.

The evaluation of the connectors was performed and is only valid for Simpson Strong-Tie® products as referenced on the stamped plans and listed on https://www.strongtie.com/.

If you have any questions, don't hesitate to contact.

Sincerely,
Arash Zandieh, Ph.D., P.E.
a.zandieh@ahzengineers.com | 901-692-0431
AHZ Consulting Engineers, Inc.

Arash Zandieh 2024.04.15 18: 15:30-04'00'

Date: 04/15/2024 Job Code: 718 Remington Street Page 2 of 57

Design Codes and Guidelines:

- 1. ASCE (2016). "Minimum Design Loads for Buildings and Other Structures. ASCE/SEI Standard 7-16."
- 2. 2021 International Building Code (IBC)
- 3. ACI 318-19

Design parameters:

Risk Category: II

Design wind speed: 107 mph Wind exposure category: C Ground snow load: 35 psf Building height: 10 ft Seismic Design Category: D

Seismic Design Category: D Seismic Importance Factor: 1.0

 S_S : 0.194g, S_1 : 0.056g

Soil Site Class: D-Default Soil S_{DS}: 0.207g, S_{D1}: 0.090g

Solar Module:

BVM76:	L2M-540)-H-HC-BF
--------	---------	-----------

Length	7.47	ft
Width	3.72	ft
Weight	61.73	lbs

Weight of PV panels:

 $W_{PV} = 4.00$ psf

Date: 04/15/2024 Job Code: 718 Remington Street Page **3** of **57**

Wind Load on Pergola:

Basic Wind Speed:	V	107	mph
Exposure Category:	С		
Risk Category:	II		
PV Module Angle:	heta	0	degree
Building Roof Height:	h	10	ft
Velocity Pressure Exposure Coefficient:	Kz	0.85	ASCE 7-16, Table 26.10.1
Topographic Factor:	K_{zt}	1	ASCE 7-16, Section 26.8.2
Wind Directionality Factor:	K _d	0.85	ASCE 7-16, Table 26.6.1
ground elevation factor	Ke	1	ASCE 7-16, Section 26.9
Velocity pressure $q_z = 0.00256 K_z K_{zt} K_d V^2$:	21.2	psf	(Conservative) ASCE 7-16, Equation 26.10-1

We use two approaches to calculate the wind pressure on solar panels:

- 1) using ASCE 7-16, Section 29.4.4
- 2) using ASCE 7-16, Section 30.3.2

We will use the maximum wind pressure from two approaches for design.

Approach 1: ASCE 7-16 Section 29.4.4

$p=q_h(GC_p)(\gamma_E)(\gamma_a)$			ASCE 7-16, Equation 29.4-7
γa	0.8		ASCE 7-16, Figure 9.4.8 (Conservative)
γε	1.5		Assume Exposed
GC_p : External pressure coefficient Zone 1':	GC_{p}	0.9	ASCE 7-16, Figure 30.3.2A

Date: 04/15/2024 Job Code: 718 Remington Street Page **4** of **57**

External pressure coefficient Zone 1: External pressure coefficient Zone 2: External pressure coefficient Zone 3: External pressure coefficient (downward): <u>Use GCp</u> for Zone 2	GC_p GC_p GC_p	1.7 2.3 3.2 0.3	
Minimum Design Wind Pressures	16	psf	ASCE 7-16, Section 30.2.2
Uplift Wind load on modules: Downward Wind load on modules:	58.4 7.6	psf psf	>16 psf OK <16 psf ; Use 16 psf
Approach 2: ASCE 7-16, Section30.2.2			
Design Wind Pressure $p = q_z (GC_p - GC_{pi})$ Internal pressure coefficient:	<i>GC_{pi}</i>	0.18	ASCE 7-16, Equation 30.3-1 ASCE 7-16, Table 26.13-1
GC _p : External pressure coefficient Zone 1': External pressure coefficient Zone 1: External pressure coefficient Zone 2: External pressure coefficient Zone 3: External pressure coefficient (downward): <u>Use GC_p for Zone 2</u>	GC_p GC_p GC_p GC_p	0.9 1.7 2.3 3.2 0.3	ASCE 7-16, Figure 30.3.2A
Minimum Design Wind Pressures	16	psf	ASCE 7-16, Section 30.2.2

Date: 04/15/2024 Job Code: 718 Remington Street Page **5** of **57**

>16 psf OK

Wind pressure acting away from the

surface: 52.5 psf

Wind pressure acting toward the surface: 10.2 psf <16 psf; Use 16 psf

Snow loads:

pg = Ground Snow Load =	35	psf	
pf = 0.7 Ce Ct I pg			(ASCE7-16 - Eq 7.3-1)
Ce = Exposure Factor =	1		(ASCE7-16 - Table 7.3-1)
Ct = Thermal Factor =	1.2		(ASCE7-16 - Table 7.3-2)
I = Importance Factor =	1		(ASCE7-16-7.3.3)
pf = Flat Roof Snow Load =	29.4	psf	
ps = Cspf			(ASCE7-16- Eq 7.4-1)
Cs = Slope Factor =	1		(ASCE7-16- Fig. 7.4-1)
ps = Sloped Roof Snow Load =	29.4	psf	

Members Design:

The pergola elements are modeled using FORTE software, and the results are provided in Appendix 1. Conservatively, a maximum uniform load of 4 psf is assumed for the PV system.

Design Loads:

Dead Load= 4 psf Snow= 30 psf Wind Uplift= -52.5 psf Wind Downward= 16 psf

Members:

4X12, Tributary width= 2'-9 ½", Length= 15' 7 ½", Cantilever= 2' 2 ¾" 6X12, Tributary width 7'-9 ¾", Length= 15' 7 ½", Cantilever= 1' 1 ½" 6X6 Post, Tributary area= 105 psf, Length= 9' ½"

Additional load for 4X12= 5 psf, and for 6X12= 1.5 psf.

Date: 04/15/2024 Job Code: 718 Remington Street Page **6** of **57**

Attachment Check:

LSSR410Z Simpson Strong-Tie Connector:

The LSSR410Z Simpson Strong-Tie Connector are used for connecting 4X12 to 6X12. The structural output for LSSR410Z Simpson Strong-Tie Connector is given in Appendix 2. The allowable uplift is given in Appendix 2:

Allowable Uplift Capacity: 695 lbs

The maximum uplift load (487 lbs) calculated at attachments are below the allowable values.

APT8 Simpson Strong-Tie Connector:

Edge Posts:

(1) APT8 Simpson Strong-Tie Connector are used for connecting 6X12 to the edge 6X6 posts. The structural output for APT8 Simpson Strong-Tie Connector is given in Appendix 3. The allowable uplift is given in Appendix 3:

Allowable Uplift Capacity: 2130 lbs

The maximum uplift load (1421 lbs) calculated at attachments are below the allowable values.

Middle Posts:

(2) APT8 Simpson Strong-Tie Connector are used for connecting 6X12 to the middle 6X6 posts. The structural output for APT8 Simpson Strong-Tie Connector is given in Appendix 3. The allowable uplift is given in Appendix 3:

Allowable Uplift Capacity: 2X2130 lbs = 4260

The maximum uplift load (3173 lbs) calculated at attachments are below the allowable values.

MPBZ™ Moment Post Base Simpson Strong-Tie:

The MPBZ™ Moment Post Base are used for connecting 6X6 posts to the foundation. The structural output for MPBZ™ Moment Post Base is given in Appendix 4. The allowable uplift is given in Appendix 4:

• Allowable Uplift Capacity: 5815 lbs

The maximum uplift load (2940 lbs) calculated at attachments are below the allowable values.

Date: 04/15/2024 Job Code: 718 Remington Street Page **7** of **57**

Foundation Design:

Load Combinations:

Loads are calculated for soil bearing, overturning, and sliding checks using the following ASD load combinations:

Combination 1: D

Combination 2: D + S

Combination 3: D + 0.75S

Combination 4: D + (0.6W or 0.7E)

Combination 5: D + 0.75L + 0.75(0.6W) + 0.75SCombination 6 : D + $0.75L \pm 0.75(0.7E) + 0.75S$

Combination 7: 0.6D + (0.6W or 0.7E)

Loads are calculated for footing and anchor bolts structural design using the following SD load combinations:

Combination 1: 1.4D

Combination 2: 1.2D + 0.5S

Combination 3: 1.2D + 1.6S + 0.5W Combination 4: 1.2D + 1.0W + 0.5S Combination 5: 1.2D + 1.0E + 0.2S

Combination 6: 0.9D + 1.0W Combination 7: 0.9D + 1.0E

Where

D = dead load

S = snow load

W = wind load

E = earthquake (seismic load)

Design Summary:

Computer software ENERCALC was used to design foundation. The $3'-6" \times 3'-6" \times 1'-0"$ (W x L x H) concrete footing, with f'c = 3,000 psi, is needed. Furthermore, the concrete column with $1'-4" \times 1'-4" \times 2'-0"$ (W x L x H) dimensions and f'c = 3,000 psi is used on the top of the footing. Appendix 5 shows the ENERCALC design report.

Computer program Simpson Strong-Tie was used to design the anchors. Appendix 6 shows the Simpson Strong-Tie design report.

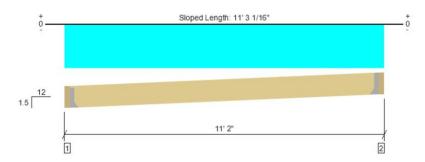
Use (3) 1/2" Machine Bolt per pad, (3) total with minimum 2.35" embedment in concrete. The concrete slab must be minimum of 10" thick and must provide at least 1 ft edge distance for each anchor.

Structural design of the slab and its impact on the building framing is responsivity of others. Special inspection is required for installation of the Strong-Bolt® 2 post-installed anchors.

Date: 04/15/2024 Job Code: 718 Remington Street Page **8** of **57**

Appendix 1

FORTE Results


Date: 04/15/2024 Job Code: 718 **Remington Street** Page 9 of 57

MEMBER REPORT

PASSED

Level, 4X12-Uplift- rev01 1 piece(s) 4 x 12 DF No.2 @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	64 @ 3 1/2"	3281 (1.50")	Passed (2%)		1.0 D (All Spans)
Shear (lbs)	381 @ 1' 2 11/16"	7560	Passed (5%)	1.60	0.6 D + 0.6 W (All Spans)
Moment (Ft-lbs)	-1221 @ 5' 7"	10564	Passed (12%)	1.60	0.6 D + 0.6 W (All Spans)
Live Load Defl. (in)	0.000 @ 3 1/2"	0.533	Passed (L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	-0.038 @ 5' 7"	0.711	Passed (L/999+)		0.6 D + 0.6 W (All Spans)

Member Length : 10' 9 3/8" System : Roof Member Type : Joist Building Use: Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 1.5/12

- . Deflection criteria: LL (L/240) and TL (L/180).
- . A 15% increase in the moment capacity has been added to account for repetitive member usage.
- . A 5.7% decrease in the moment capacity has been added to account for lateral stability.
- -487 lbs uplift at support located at 3 1/2". Strapping or other restraint may be required.
- -487 lbs uplift at support located at 10' 10 1/2". Strapping or other restraint may be required.
 Applicable calculations are based on NDS.

		Bearing Leng	th	Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Wind	Factored	Accessories
1 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	-879	67/-487	See note 1
2 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	-879	67/-487	See note 1

[•] At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

[•] ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' o/c	
Bottom Edge (Lu)	All Bearing Points	

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5			
2 - Face Mount Hanger	LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5			

Refer to manufacturer notes and instructions for proper installation and use of all connectors

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Wind (1.60)	Comments
1 - Uniform (PLF)	0 to 11' 2"	N/A	12.0	-157.5	Default Load

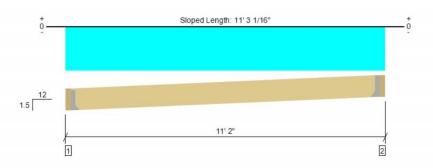
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumwent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuser

Date: 04/15/2024 Job Code: 718 Remington Street Page 10 of 57



SOLUTIONS REPORT

PASSED

Level, 4X12-Uplift- rev01

Current Solution: 1 piece(s) 4 x 12 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	64 @ 3 1/2"	3281 (1.50")	Passed (2%)		1.0 D (All Spans)
Shear (lbs)	381 @ 1' 2 11/16"	7560	Passed (5%)	1.60	0.6 D + 0.6 W (All Spans)
Moment (Ft-lbs)	-1221 @ 5' 7"	10564	Passed (12%)	1.60	0.6 D + 0.6 W (All Spans)
Live Load Defl. (in)	0.000 @ 3 1/2"	0.533	Passed (L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	-0.038 @ 5' 7"	0.711	Passed (L/999+)	-	0.6 D + 0.6 W (All Spans)

Member Length: 10' 9 3/8" System: Roof Member Type: Joist Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD Member Pitch: 1.5/12

All Product	Solutions			
Depth	Series	Plies	Spacing	Cost Index
5 1/2"	1 3/4" 1.55E TimberStrand® LSL	1	24"	0.62 *
11 1/4"	4 x DF No.2	1	12"	5.25

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

Job Notes	
	Job Notes

Date: 04/15/2024 Job Code: 718 Remington Street Page 11 of 57

FORTEWEB 1 piece(s) 4 x 12 DF No.2 @ 12" OC

PASSED

Summary of Loads to Supports

All load groups / combinations / patterns			
	A	10' 7"	
Maximum Down (lbs) / LDF	67/0.90		67/0.90
Critical Down (lbs) / LDF	67/0.90	-	67/0.90
Maximum Uplift (lbs) / LDF	-487/1.60		-487/1.60
Critical Uplift (lbs) / LDF	-487/1.60		-487/1.60
Bearing Length	Hanger		Hanger
Support Fc-perp (psi)	625		625
Top edge required unbraced length / C _L	N/A	60.00"/0.9902	N/A
Bottom edge required unbraced length / CL	N/A	127.99"/0.9426	N/A

1.0 Dead (LDF = 0.9)

Loading On All Spans					
			10' 7"	-	<u> </u>
Member Reaction (lbs)	6	4	-	6	i4
Loads to Supports (lbs)	6	7		6	7
Shear used for design (lbs)	N/A	53	-	-53	N/A
Shear at support node (lbs)	N/A	64		-64	N/A
Shear at span point load (lbs)	-	-	N/A		-
Moment (Ft-lbs)	-	3	169		
Live Load Deflection (in)		-	0.000"	-	-
Total Load Deflection (in)	-	-	0.005"		-

1.0 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans	10 er Reaction (ibs) -436 -460 used for design (ibs) at support node (ibs) N/A -436 -436				
			10' 7"	_	
Member Reaction (lbs)	-4	36		-436	
Loads to Supports (lbs)	-460		-4	-460	
Shear used for design (lbs)	N/A	N/A -359		359	N/A
Shear at support node (lbs)	N/A	-436	-	436	N/A
Shear at span point load (lbs)			N/A		-
Moment (Ft-lbs)			-1154		÷
Live Load Deflection (in)			-0.041"		-
Total Load Deflection (in)			-0.036"		-

0.6 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans			10' 7"	462	
Member Reaction (lbs)	ember Reaction (lbs) -462			-462	
Loads to Supports (lbs)	-4	187		-4	87
Shear used for design (lbs)	N/A	-381		381	N/A
Shear at support node (lbs)	N/A	-462		462	N/A
Shear at span point load (lbs)			N/A		-
Moment (Ft-lbs)			-1221		
Live Load Deflection (in)			-0.041"	3	-
Total Load Deflection (in)			-0.038"		-

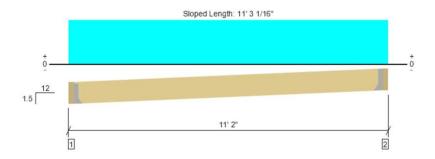
Date: 04/15/2024 Job Code: 718 Remington Street Page 12 of 57

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof	(LDF = 1.6)

Loading On All Spans			10' 7"		
Member Reaction (lbs)	-3	-311		-3	11
Loads to Supports (lbs)	-3	28		-328	
Shear used for design (lbs)	N/A	-256		256	N/A
Shear at support node (lbs)	N/A	-311		311	N/A
Shear at span point load (lbs)			N/A		•
Moment (Ft-lbs)			-823		-
Live Load Deflection (in)		-	-0.031"		-
Total Load Deflection (in)			-0.025"		-

ForteWEB v3.7, Design Engine Version V8.4.0.40

04/14/2024 2:52:07 PM


Date: 04/15/2024 Job Code: 718 **Remington Street** Page 13 of 57

MEMBER REPORT

PASSED

Level, 4X12-Downward- rev01 1 piece(s) 4 x 12 DF No.2 @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	540 @ 3 1/2"	3281 (1.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	445 @ 1' 2 11/16"	5434	Passed (8%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1429 @ 5' 7"	7949	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.039 @ 5' 7"	0.533	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.044 @ 5' 7"	0.711	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length: 10' 9 3/8" System: Roof Member Type : Joist Building Use: Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 1.5/12

- Deflection criteria: LL (L/240) and TL (L/180).
- . A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · A 1.3% decrease in the moment capacity has been added to account for lateral stability.
- Applicable calculations are based on NDS.

		Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Wind	Factored	Accessories
1 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	503	268	570	See note 1
2 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	503	268	570	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' o/c	
Bottom Edge (Lu)	All Bearing Points	

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5			
2 - Face Mount Hanger	LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5	8		

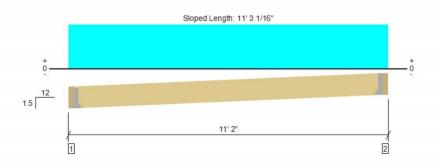
Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Wind (1.60)	Comments
1 - Uniform (PLF)	0 to 11' 2"	N/A	12.0	90.0	48.0	Default Load

Weyerhauser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blong) Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		Weyerhaeuser


Date: 04/15/2024 Job Code: 718 Remington Street Page 14 of 57

SOLUTIONS REPORT

PASSED

Level, 4X12-Downward- rev01 Current Solution: 1 piece(s) 4 x 12 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	540 @ 3 1/2"	3281 (1.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	445 @ 1' 2 11/16"	5434	Passed (8%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1429 @ 5' 7"	7949	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.039 @ 5' 7"	0.533	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.044 @ 5' 7"	0.711	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

Member Length: 10' 9 3/8" System: Roof Member Type: Joist Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD Member Pitch: 1.5/12

All Product Solutio	ns			
Depth	Series	Plies	Spacing	Cost Index
7 1/4"	1 3/4" 1.55E TimberStrand® LSL	1	24"	0.82 *
11 1/4"	4 x DF No.2	1	12"	5.25

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

Job Notes	
	Job Notes

Date: 04/15/2024 Job Code: 718 Remington Street Page 15 of 57

FULL DETAIL REPORT Level, 4X12-Downward- rev01
1 plece(s) 4 x 12 DF No.2 @ 12" OC

PASSED

Summary of Loads to Supports

All load groups / combinations / patterns			
		10' 7"	
Maximum Down (lbs) / LDF	570/1.15	(**)	570/1.15
Critical Down (lbs) / LDF	570/1.15		570/1.15
Maximum Uplift (lbs) / LDF	0/1.00		0/1.00
Critical Uplift (lbs) / LDF	0/1.00		0/1.00
Bearing Length	Hanger	1860	Hanger
Support Fc-perp (psi)	625		625
Top edge required unbraced length / C _L	N/A	60.00"/0.9868	N/A
Bottom edge required unbraced length / C _L	N/A	N/A	N/A

1.0 Dead (LDF = 0.9)

Loading On All Spans			10' 7"		_
Member Reaction (lbs)	6	4		6	4
Loads to Supports (lbs)	6	7		6	7
Shear used for design (lbs)	N/A	53		-53	N/A
Shear at support node (lbs)	N/A	64		-64	N/A
Shear at span point load (lbs)		-	N/A		4 7)
Moment (Ft-lbs)	-	•	169	3	-
Live Load Deflection (in)			0.000"		-
Total Load Deflection (in)		-	0.005"		-

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

Loading On All Spans			10' 7"		
Member Reaction (lbs)	4.	21		42	21
Loads to Supports (lbs)	4	44		44	14
Shear used for design (lbs)	N/A	347		-347	N/A
Shear at support node (lbs)	N/A	421	-	-421	N/A
Shear at span point load (lbs)		-	N/A	/-	-
Moment (Ft-lbs)		-	1114	9	-
Live Load Deflection (in)		-	0.029"	-	-:
Total Load Deflection (in)		-	0.034"		47.

1.0 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans					
Member Reaction (lbs)	2	16	10' 7"	21	6
Loads to Supports (lbs)	2.	28		22	28
Shear used for design (lbs)	N/A	178		-178	N/A
Shear at support node (lbs)	N/A	216		-216	N/A
Shear at span point load (lbs)			N/A	-	-
Moment (Ft-lbs)	10	-	573		
Live Load Deflection (in)			0.012"	-	
Total Load Deflection (in)		-	0.018"	-	

0.6 Dead + 0.6 Wind (LDF = 1.6)

Loading On Ali Spans			
		10' 7"	_
Member Reaction (lbs)	191		191
Loads to Supports (lbs)	201		201

Date: 04/15/2024 Job Code: 718 Remington Street Page 16 of 57

Shear used for design (lbs)	N/A	157		-157	N/A
Shear at support node (lbs)	N/A	191	***	-191	N/A
Shear at span point load (lbs)	-		N/A	(
Moment (Ft-lbs)			505	-	-
Live Load Deflection (in)	***		0.012"		-
Total Load Deflection (in)			0.016"	-	4:

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

Loading On All Spans			10' 7"		
Member Reaction (lbs)	55	35		53	35
Loads to Supports (lbs)	56	85		56	35
Shear used for design (lbs)	N/A	441		-441	N/A
Shear at support node (lbs)	N/A	535		-535	N/A
Shear at span point load (lbs)		-	N/A	-	-
Moment (Ft-lbs)	-		1417		
Live Load Deflection (in)			0.038"		
Total Load Deflection (in)		-	0.044"	-	-

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

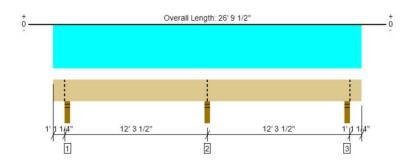
Loading On All Spans			10' 7"		
Member Reaction (lbs)	1	78		17	78
Loads to Supports (lbs)	1	88		18	38
Shear used for design (lbs)	N/A	147		-147	N/A
Shear at support node (ibs)	N/A	178		-178	N/A
Shear at span point load (lbs)			N/A		
Moment (Ft-lbs)			472		
Live Load Deflection (in)	22		0.009"	**	
Total Load Deflection (in)	22		0.015"		

1.0 Dead + 1.0 Snow (LDF = 1.15)

Loading On All Spans					
			10' 7"		
Member Reaction (lbs)	5	40		54	10
Loads to Supports (lbs)	570			570	
Shear used for design (lbs)	N/A	445		-445	N/A
Shear at support node (lbs)	N/A	540	-	-540	N/A
Shear at span point load (lbs)		-	N/A	-	-
Moment (Ft-lbs)	9				
Live Load Deflection (in)			0.039"		
Total Load Deflection (in)			0.044"		-

ForteWEB v3.7, Design Engine Version V8.4.0.40

04/14/2024 5:03:42 PM


Date: 04/15/2024 Job Code: 718 **Remington Street** Page 17 of 57

MEMBER REPORT

PASSED

Level, 6X12-Uplift 1 piece(s) 6 x 12 DF No.2 @ 12" OC

Drawing is Conceptual, All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1079 @ 13' 4 3/4"	12031 (3.50")	Passed (9%)		1.0 D (All Spans)
Shear (lbs)	1359 @ 14' 6"	11469	Passed (12%)	1.60	0.6 D + 0.6 W (Adj Spans)
Moment (Ft-lbs)	3867 @ 13' 4 3/4"	14091	Passed (27%)	1.60	0.6 D + 0.6 W (Adj Spans)
Live Load Defl. (in)	0.034 @ 0	0.200	Passed (2L/886)		1.0 D + 0.6 W (Alt Spans)
Total Load Defl. (in)	0.030 @ 0	0.200	Passed (2L/990)		0.6 D + 0.6 W (Alt Spans)

Member Length : 26' 9 1/2" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- . Deflection criteria: LL (L/360) and TL (L/240).
- . Overhang deflection criteria: LL (0.2") and TL (0.2").
- A 0.4% decrease in the moment capacity has been added to account for lateral stability.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- · Applicable calculations are based on NDS.

	Bearing Length		Loads	to Suppor				
Supports	Total	Available Required		Dead Wind		Factored	Accessories	
1 - Stud wall - DF	3.50"	3.50"	1.50"	425	-2797	425/-1423	Blocking	
2 - Stud wall - DF	3.50"	3.50"	1.50"	1079	-6377	1079/-3178	Blocking	
3 - Stud wall - DF	3.50"	3.50"	1.50"	425	-2797	425/-1423	Blocking	

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' o/c	
Bottom Edge (Lu)	All Bearing Points	

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Wind (1.60)	Comments
1 - Uniform (PLF)	0 to 26' 9 1/2"	N/A	72.0	-420.0	Default Load

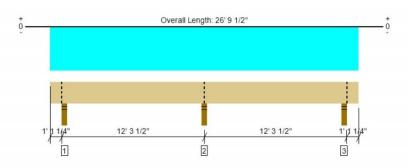
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blong Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		Weyerhaeuser

Date: 04/15/2024 Job Code: 718 Remington Street Page 18 of 57



SOLUTIONS REPORT

PASSED

Level, 6X12-Uplift

Current Solution: 1 piece(s) 6 x 12 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1079 @ 13' 4 3/4"	12031 (3.50")	Passed (9%)		1.0 D (All Spans)
Shear (lbs)	1359 @ 14' 6"	11469	Passed (12%)	1.60	0.6 D + 0.6 W (Adj Spans)
Moment (Ft-lbs)	3867 @ 13' 4 3/4"	14091	Passed (27%)	1.60	0.6 D + 0.6 W (Adj Spans)
Live Load Defl. (in)	0.034 @ 0	0.200	Passed (2L/886)		1.0 D + 0.6 W (Alt Spans)
Total Load Defl. (in)	0.030 @ 0	0.200	Passed (2L/990)		0.6 D + 0.6 W (Alt Spans)

Member Length : 26' 9 1/2" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

All Product Solutions					
Depth	Series	Plies	Spacing	Cost Index	
11 1/2"	6 x DF No.2	1	12"	×	

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		W

Date: 04/15/2024 Job Code: 718 Remington Street Page 19 of 57

FORTEWEB

FULL DETAIL REPORT Level, 6X12-Uplift 1 piece(s) 8 x 12 DF No.2 @ 12" OC

PASSED

Summary of Loads to Supports	_						
All load groups / combinations / patterns							
	1'3'	A	12' 1 3/4"	A	12' 1 3/4"	A	1'3"
Maximum Down (lbs) / LDF	-	425/0.90	-	1079/0.90	2	425/0.90	_
Critical Down (lbs) / LDF	-	425/0.90	-	1079/0.90	= 1	425/0.90	-
Maximum Upifft (ibs) / LDF	-	-1423/1.60	-	-3178/1.60	-	-1423/1.60	-
Critical Uplift (lbs) / LDF	-	-1423/1.60	-	-3178/1.60		-1423/1.60	-
Bearing Length		3.50*	**	3.50*		3.50*	
Support Fc-perp (psi)	0.774	625		625	-	625	
Top edge required unbraced length / C _L	36.00*/0.9963	36.001/0.9963	36.001/0.9963	36.00°/0.9963	36.00"/0.9963	36.00*/0.9963	36.001/0.9963
Bottom edge required unbraced length / CL	15.00*/0.9992	145.75 0.9917	145.751/0.9834	145.75 0.9917	145.75*/0.9834	145.75*/0.9917	15.00'/0.9992

Loading On All Spans	1'3'		A	12' 1 3/4"			12 1 3/4"			1'3"
Member Reaction (lbs)	**	4	25	*	10	79	**	42	5	- 22
Loads to Supports (lbs)	-	4	25	***	10	79		42	5	-
Shear used for design (lbs)	-	-11	255		-460	460		-255	11	
Shear at support node (fbs)	040	-90	335	(44)	-540	540	**	-335	90	
Shear at span point load (lbs)	N/A		-	N/A			N/A			N/A
Moment (Pt-lbs)	a		56	723	-10	300	723	-5	6	0
Live Load Deflection (in)	0.000*		-	0.000*		-	0.000*			0.000*
Total Load Deflection (In)	-0.006*		-	0.016*			0.016*			-0.006*

1.0 Deed + 0.6 Wind (LDF = 1.6)

Loading On All Spans										
5 8	1'3'		<u> </u>	12' 1 3/4"		A	12 1 3/4			1'3"
Member Reaction (lbs)	-	-1	062	-	-2	698		-10	062	
Loads to Supports (lbs)	-	-10	062	42	-2	698	-	-10	062	-
Shear used for design (lbs)		26	-638	-	1150	-1150	- 2	638	-26	-
Shear at support node (lbs)	-	225	-837	-	1349	-1349		837	-225	
Shear at span point load (lbs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Ft-ibs)	O	1	41	-1806	32	249	-1808	1-	41	0
Live Load Deflection (in)	0.021*		4	-0.055"			-0.055*		-	0.021*
Total Load Deflection (In)	0.015*		-	-0.039"			-0.039*			0.015

1.0 Dead + 0.6 Wind (LDF = 1.6)

ALTERNATE span loading on odd # spans										
=	1'3'		A	12' 1 3/4"		<u> </u>	12' 1 3/4"			1'3"
Member Reaction (lbs)	-	2	81	.75	-6	109	-	-91	8	0.75
Loads to Supports (ibs)	-	2	81	**	-6	109	**	-91	8	-
Shear used for design (lbs)	-	26	426	**	-289	-979		809	11	-
Shear at support node (lbs)	-	225	506	-	-369	-1178	-	1008	90	-
Shear at span point load (lbs)	N/A			N/A			N/A			N/A
Moment (Ft-lbs)	0	1-	41	1918	9	75	-2880	-5	8	0
Ive Load Deflection (in)	-0.013*			0.044*			-0.097*			0.034*
Total Load Deflection (in)	-0.019*	1	2	0.059*			-0.081*			0.028*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ALTERNATE apan loading on even # spans										
_	1'3'		A	12' 1 3/4"			12' 1 3/4"		<u> </u>	1'3"
Member Reaction (ibs)	-	-	918		-8	09		2	81	-
Loads to Supports (ibs)	0.000	14	918	-	-8	09		2	81	
Shear used for design (lbs)	-	-11	-809	-	979	289		-426	-26	-
Shear at support node (ibs)	-	-90	-1008	-	1178	369	, u	-506	-225	-
Shear at span point load (lbs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Pt-lbs)	0		56	-2880	91	75	1918	1	41	0
Live Load Deflection (in)	0.034*		-	-0.097"			0.044*		- 1	-0.013*
Total Load Deflection (In)	0.028*		-	-0.081"			0.059*			-0.018*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 1										
	1:3'		A	12' 1 3/4"			12' 1 3/4'	-	<u> </u>	1:3*
Member Reaction (lbs)	-	-1	254	**	-71	B5	-	27	77	-
Loads to Supports (lbs)		-1	254	170	-71	85		27	77	17
Shear used for design (ibs)	1000	26	-830	(##)	959	293		-422	-26	0.00
Shear at support node (fbs)	***	225	-1029	-	1168	373	54	-502	-225	(100)
Shear at span point load (ibs)	N/A		20	N/A			NA		2	N/A
Moment (Ft-lbs)	0	. 1	141	-2798	92	25	1890	14	41	0
Live Load Deflection (in)	0.032*		-1	-0.094"			0.043*			-0.013*
Total Load Deflection (in)	0.026*		-	-0.079"			0.058*		4	-0.019*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 2										
	1:3"		A	12' 1 3/4"			12 1 3/4"			1:3*
Member Reaction (lbs)	-	- 2	723	-	-2	747	-	-77	23	-
Loads to Supports (lbs)	- 2	- 47	723	127	-2	747		-77	23	1/2
Shear used for design (ibs)		-11	-614		1175	-1175		614	11	
Shear at support node (lbs)	-	-90	-813	-	1373	-1373		813	90	-
Shear at span point load (lbs)	N/A		20	N/A			N/A			N/A
Moment (Ft-lbs)	0		58	-1892	35	47	-1892	-5	6	0
Live Load Deflection (in)	0.022*		-	-0.057"			-0.057°			0.022*
Total Load Deflection (In)	0.016*			-0.041"			-0.041*	W .		0.016*

1.0	Dead	+	0.6	Wind	(LDF	= 1.6
		۳				

ADJACENT span loading on support 3							
	1'3'	A	12' 1 3/4"	A	12' 1 3/4"	A .	1'3"
Member Reaction (lbs)	-	277	-	-785		-1254	-

Date: 04/15/2024 Job Code: 718 Remington Street Page **20** of **57**

Loads to Supports (ibs)	-	2	77	**	-7	85	**	-12	54	-
Shear used for design (lbs)		26	422		-293	-959	2	830	-26	200
Shear at support node (tbs)	-	225	502	-	-373	-1158	-	1029	-225	-
Shear at span point load (lbs)	N/A		-	N/A		-	N/A	3		N/A
Moment (Ft-lbs)	0	1-	41	1890	9	25	-2796	14	и	0
Live Load Deflection (in)	-0.013*		-0	0.043*		4 1	-0.094"	-		0.032
Total Load Deflection (In)	-0.019°		20	0.058*			-0.079°			0.026

0.6 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans										
minimization and the state of t	1'3'		A	12' 1 3/4"			12' 1 3/4"			1'3"
Member Reaction (lbs)	**	-13	232	**	-31	130		-13	232	-
Loads to Supports (lbs)	-	-13	232		-31	30		-13	232	-
Shear used for design (lbs)	740	30	-741		1334	-1334		741	-30	
Shear at support node (lbs)	-	261	-971	140	1585	-1565	**	971	-261	-
Shear at span point load (lbs)	N/A		-	N/A			NA		-	N/A
Moment (Pt-lbs)	0	1	63	-2095	37	69	-2095	1	63	0
Live Load Deflection (in)	0.021*		-	-0.055"		-	-0.065*		-	0.021*
Total Load Deflection (in)	0.017*		40	-0.045"			-0.045*			0.017*

0.6 Dead + 0.6 Wind (LDF = 1.6)

ALTERNATE span loading on odd # spans										
	1'3'		<u> </u>	12' 1 3/4"		A	12' 1 3/4"			1'3"
Member Reaction (ibs)	2	1	11	-	-1:	241	-	-10	88	_
Loads to Supports (lbs)	170	1	11		-1:	241	=======================================	-10	88	
Shear used for design (lbs)	-	30	324	-	-105	-1163	-	912	6	-
Shear at support node (lbs)	200	261	372	**	-153	-1394	24	1142	54	940
Shear at span point load (lbs)	N/A		-	N/A		-	N/A			N/A
Moment (Pt-lbs)	0	1	63	1764	14	195	-3158	-3	4	0
Live Load Deflection (in)	-0.013*		**1	0.044*			-0.097*			0.034*
Total Load Deflection (in)	-0.017°			0.053*		-	-0.087*			0.030*

9.6 Dasd + 9.6 Wind (LDF = 1.6)

ALTERNATE span loading on even # spans	l									
	1'3'		<u> </u>	12' 1 3/4"			12' 1 3/4'			1'3"
Member Reaction (lbs)		-1	088	44	-12	241		11	11	-
Loads to Supports (Ibs)	-	- 4	088	122	-12	241	- 12	11	11	7722
Shear used for design (ibs)	-7	-6	-912	-	1163	105	-	-324	-30	
Shear at support node (ibs)	-	-54	-1142	**	1394	153	-	-372	-281	-
Shear at span point load (lbs)	N/A		-	N/A			N/A			N/A
Moment (Ft-ibs)	0		34	-3158	14	95	1764	16	33	0
Live Load Deflection (in)	0.034*		-	-0.097"		-	0.044*			-0.013*
Total Load Deflection (in)	0.030*			-0.087"			0.053*			-0.017*

0.6 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 1										
	1'3'						12' 1 3/4"			1'3"
Member Reaction (ibs)		-1	423	-	-12	17	#	10	07	-
Loads to Supports (ibs)		-1	423	-	-12	17		11	07	-
Shear used for design (lbs)		30	-932	23	1143	109		-320	-30	-
Shear at support node (lbs)		261	-1162	**	1374	157		-368	-281	- 20
Shear at span point load (ibs)	N/A			N/A			NA		4	N/A
Moment (Ft-lbs)	0	1	63	-3073	14	45	1730	1	53	0
Live Load Deflection (in)	0.032*		2	-0.094"		2	0.043*		-	-0.013*
Total Load Deflection (in)	0.028*		-	-0.085"			0.052*			-0.016*

0.6 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT spen loading on support 2										
	1'3'		Ā	12' 1 3/4"		A	12' 1 3/4'	_		1'3"
Member Reaction (ibs)		-8	393	(##):	-3	178		-8	93	0.00
Loads to Supports (ibs)	-	-8	393	**	-3	178		-8	93	-
Shear used for design (lbs)	-	-6	-718	-	1359	-1359	=	716	8	-
Shear at support node (lbs)	_	-54	-947	-	1589	-1589	2	947	54	7/2
Shear at span point load (ibs)	N/A		70	N/A		-	NA			N/A
Moment (Ft-lbs)	0		34	-2181	36	367	-2181	-3	14	0
Live Load Deflection (in)	0.022*		4	-0.057"			-0.057*		_	0.022*
Total Load Deflection (in)	0.019*			-0.047"			-0.047°		2	0.018*

9.6 Doed + 0.6 Wind (LDF = 1.5)

ADJACENT span loading on support 3										
	1'3'		A	12' 1 3/4"		A	12' 1 3/4"			1'3"
Member Reaction (lbs)	-	1	07	-	-1:	217	-	-14	123	-
Loads to Supports (lbs)	-	1	07	-	-1:	217	H	-14	123	-
Shear used for design (lbs)	-	30	320		-109	-1143	>+	932	-30	94
Shear at support node (lbs)	323	261	368	20	-157	-1374	-	1162	-261	- 22
Shear at span point load (ibs)	N/A		-	N/A		-	NA		-	N/A
Moment (Ft-lbs)	0	1	63	1730	14	145	-3073	11	53	0
Live Load Deflection (in)	-0.013*		400	0.043*			-0.094*		-	0.032
Total Load Deflection (in)	-0.016*		2	0.052*			-0.085*		-	0.028*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

oading On All Spans										
	1'3'		<u> </u>	12' 1 3/4"		<u> </u>	12' 1 3/4"		A	1'3"
Member Reaction (lbs)	***	-6	190	-	-13	754		-6	90	-
Loads to Supports (lbs)	-	-6	190	177	-17	754		-6	190	
Shear used for design (ibs)	**	17	-415		748	-748		415	-17	-
Shear at support node (lbs)	· · · · ·	148	-544	-	877	-877		544	-148	-
Shear at span point load (ibe)	N/A		-	N/A		2	N/A			N/A
Moment (Ft-lbs)	0	9	31	-1174	21	12	-1174		1	0
Live Load Deflection (in)	0.016*		-	-0.041"			-0.041*		-	0.016*

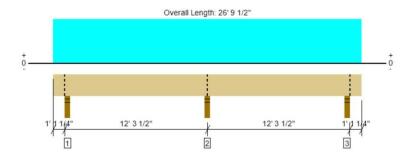
Date: 04/15/2024 Job Code: 718 Remington Street Page 21 of 57

Total Load Deflection (in) 1.0 Dand + 0.45 Wind + 0.75 Floor + 0.75 Roof (LD ALTERNATE span loading on odd 9 spans	0.010* F = 1.6)		**	-0.025*			-0.025*		-		0.010*
ALTERNATE span loading on odd # spans	F = 1.6)										
ALTERNATE span loading on odd # spans	F = 1.8)										
Member Reaction (lbs)											
Member Reaction (lbs)											
	1'3"		À	12' 1 3/4"		A	12' 1 3/4"		A		1'.3"
Loads to Supports (ibs)	-		117	-	-3	137		-582		- 0	-
			117	**	.5	137			-582		-
Shear used for design (lbs)		17	384		-332	-619		543	1	11	-
Shear at support node (ibs)		146	463	1,000	-411	-749		672		90	
Shear at span point load (lbs)	N/A			N/A		-	N/A				N/A
Moment (Ft-lbs)	0		91	1581	4	06	-1989		-66		0
Live Load Deflection (in)	-0.010*			0.033*			-0.072"				0.025
Total Load Deflection (in)	-0.016*			0.048*		-	-0.057*				0.019*
I.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LD	F = 1.8)										
ALTERNATE span loading on even # spans	1'3'		_	12' 1 3/4"		_	12' 1 3/4"		A	_	1' 3"
Member Reaction (fbs)			582	-	- 4	137			317		-
Loads to Supports (lbs)	2		582	-	100	137			317	-1	-
Shear used for design (ibs)		-11	-543		619	332		-384		-17	-
Shear at support node (lbs)	- 2	-90	-672		749	411	-	-463	_	-148	-
Shear at span point load (lbs)	N/A			N/A	2.00	-	N/A			1.10	N/A
Moment (Ft-lbs)	0		56	-1989	4	06	1591		91	-	0
Live Load Deflection (in)	0.025*			-0.072*			0.033*	-		-1	-0.010
Total Load Deflection (in)	0.019*	_		-0.057"		. 1	0.048*	_	-	-	
.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LD	F = 1.5)						0.046				-0.016
1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LD ADJACENT span leading on support 1	F = 1.6)		20				0.046				-0.016
ADJACENT span loading on support 1	F = 1.5)		•	12' 1 3/4"			12' 1 3/4"		A		-0.016* 1' 3*
ADJACENT span londing on support 1 Momber Reaction (bs)			334		_	119		_	314		
ADJACENT span leading on support 1 Member Reaction (bs) Loads to Supports (bs)	1.3.	-4	334	12 13/4"	-8	119	12'13/4"		314 314		1'3"
ADJACENT span loading on support 1 Member Peaction (the) Loads to Supports (the) Shear used for design (the)		17	-558		604	335		-381	314	-17	
ADJACENT span loading on support 1 Momber Peaction (be) Loads to Supports (be) Shear used for design (bs) Shear at support node (bs)	1.3.	-4	334	12 13/4"	-8	119	12'1 3/4"		314	-17 -148	1'3"
ADJACENT span loseling on support 1 Member Reaction (Its) Locals to Support (tile) Sither used for design (Its) Sither used for design (Its) Sither at spappor node (Its)	1'3'	17 146	-558 -688	12 1 3/4"	604 733	335 414	12' 1 3/4"	-381	314	_	1'3'
ADJACENT span loading on support 1 Morrher Reaction (itse) Loads to Supports (ibis) Shear used for design (ibis) Shear used for design (ibis) Shear all support node (ibis) Morrent (iPi-libis) Morrent (iPi-libis)	1'3' N/A	17 146	-558 -688 	12 1 3/4" N/A -1929	733 3	335 335 414 	12' 1 3/4"	-381	314 314	_	1' 3*
ADJACENT span loseling on support 1 Member Reaction (Its) Locals to Support (tile) Sither used for design (Its) Sither used for design (Its) Sither at spappor node (Its)	1'3'	17 146	-558 -688	12 1 3/4"	733 3	335 414	12' 1 3/4"	-381	314	_	1'3'

1.0 Dead + 0.45	Wind + 0.75	Floor + 0.75	Roof (LDF	- 1.8)

ADJACENT span loading on support 3										
	1'3'		A	12' 1 3/4"		Δ	12' 1 3/4"		Δ	1'3"
Member Reaction (lbs)		3	14	**	-3	19		-6	334	
.oads to Supports (ibs)		3	14		-3	19	**	-6	334	-
Shear used for design (lbs)	-	17	381	-	-335	-604		558	-17	-
Shear at support node (lbs)		146	460		-414	-733		688	-146	(#)
Shear at span point load (lbs)	N/A			N/A		- 1	N/A		-	N/A
Moment (Ft-ibs)	0		91	1562	34	69	-1929		91	0
Live Load Deflection (in)	-0.010*			0.033*		-	-0.070*		-	0.024
Total Load Deflection (in)	-0.016*	- 3		0.047*		400	-0.055*			0.018

FortaWEB v3.7, Design Engine Version V8.4.0.40 04/08/2024 1:20/45 AM


Date: 04/15/2024 Job Code: 718 **Remington Street** Page 22 of 57

MEMBER REPORT

PASSED

Level, 6X12-Downward 1 piece(s) 6 x 12 DF No.2 @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4700 @ 13' 4 3/4"	12031 (3.50")	Passed (39%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	2005 @ 14' 6"	8244	Passed (24%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-5678 @ 13' 4 3/4"	10053	Passed (56%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.076 @ 19' 11 7/16"	0.405	Passed (L/999+)	-	1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.091 @ 20' 3/8"	0.607	Passed (L/999+)		1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)

Member Length : 26' 9 1/2" System : Roof Member Type : Joist Building Use: Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- $\bullet\,$ A 1.1% decrease in the moment capacity has been added to account for lateral stability.
- . Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- Applicable calculations are based on NDS.

	Bearing Length Loads to Supports (lbs)							
Supports	Total	Available	Required	Dead	Snow	Wind	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	425	1507	853	1939	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	1079	3621	1943	4700	Blocking
3 - Stud wall - DF	3.50"	3.50"	1.50"	425	1507	853	1939	Blocking

[.] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' o/c	
Bottom Edge (Lu)	All Bearing Points	

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Wind (1.60)	Comments
1 - Uniform (PLF)	0 to 26' 9 1/2"	N/A	72.0	240.0	128.0	Default Load

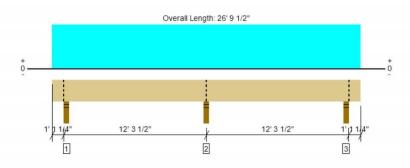
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumwent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		Weverhaei
		Weyerine

Date: 04/15/2024 Job Code: 718 Remington Street Page 23 of 57



SOLUTIONS REPORT

PASSED

Level, 6X12-Downward

Current Solution: 1 piece(s) 6 x 12 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4700 @ 13' 4 3/4"	12031 (3.50")	Passed (39%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	2005 @ 14' 6"	8244	Passed (24%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-5678 @ 13' 4 3/4"	10053	Passed (56%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.076 @ 19' 11 7/16"	0.405	Passed (L/999+)		1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.091 @ 20' 3/8"	0.607	Passed (L/999+)		1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)

Member Length : 26' 9 1/2" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

All Product S	olutions			
Depth	Series	Plies	Spacing	Cost Index
9 1/2"	1 3/4" 1.55E TimberStrand® LSL	2	24"	2.15 *
11 1/2"	6 x DF No.2	1	12"	6.85

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

Job Notes	
	Job Notes

Date: 04/15/2024 Job Code: 718 Remington Street Page **24** of **57**

FORTEWEB'

1 piece(s) 8 x 12 DF No.2 @ 12" OC

PASSED

All load groups / combinations / patterns	1'3'	A	12' 1 3/4"	A	12 1 3/4"	A	1'3"
Maximum Down (lbs) / LDF	_	1939/1.60	-	4700/1.15		1939/1.60	-
Critical Down (lbs) / LDF	-	1932/1.15	-	4700/1.15		1932/1.15	-
Maximum Upitit (ibs) / LDF	-	0/1.00	-	0/1.00	-	0/1.00	-
Ontical Uplift (lbs) / LDF	-	0/1.00	+	0/1.00		0/1.00	
Bearing Length	-	3.50*	**	3.50*		3.50*	
Support Fc-perp (psi)	0.770	625		625		625	
Top edge required unbraced length / Ct	N/A	N/A	36.001/0.9974	N/A	36.00"/0.9974	N/A	N/A
Bottom edge required unbraced length / CL	15.00*/0.9989	145.75*/0.9890	145.751/0.9890	145.75*/0.9890	145.75*/0.9890	145.75*/0.9890	15.00'/0.9989

Loading On All Spans										
	1:3'		A		A		12 1 3/4"	A		1'3"
Member Reaction (lbs)	**	4	25	-	10	79	-	42	5	-
Loads to Supports (lbs)	-	4	25	-	10	79		42	5	-
Shear used for design (lbs)	-	-11	255		-460	460		-255	11	
Shear at support node (ibs)		-90	335	(**)	-540	540		-335	90	0.000
Shear at span point load (ibs)	N/A		-	N/A			N/A			N/A
Moment (Ft-lbs)	a		58	723	-13	300	723	-5	6	0
Live Load Deflection (in)	0.000*		-	0.000*		-	0.000*			0.000*
Total Load Deflection (In)	-0.006*		-	0.016*			0.016*			-0.006*

1.0 Deed + 0.75 Floor + 0.75 Snow (LDF = 1.15)

Loading On All Spans										
	1'3'		<u> </u>	12' 1 3/4"			12' 1 3/4'			1'3"
Member Reaction (lbs)		14	487	-	37	77		14	37	
Loads to Supports (lbs)		14	187	42	37	77	-	14	37	-
Shear used for design (ibs)		-37	894	-	-1610	1610	- 2	-894	37	72
Shear at support node (lbs)	-	-315	1172	-	-1889	1889	**	-1172	315	
Shear at span point load (lbs)	N/A		-	N/A		-	N/A			N/A
Moment (Ft-ibs)	0	-1	197	2529	-48	548	2529	-11	97	0
Live Load Deflection (in)	-0.015°			0.039*		-	0.039*			-0.015*
Total Load Deflection (In)	-0.021*			0.055*			0.055*			-0.021*

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

ALTERNATE span loading on odd # spans										
·	1'3'		A	12' 1 3/4"		<u> </u>	12' 1 3/4"			1'3"
Member Reaction (lbs)		1007			3103		-	14	36	0.75
Loads to Supports (ibs)	(44)	10	107		31	03	**	14	36	(96)
Shear used for design (lbs)	760	-37	514	**	-1096	1549		-965	24	-
Shear at support node (lbs)	-	-315	692	-	-1275	1828	-	-1233	203	-
Shear at span point load (lbs)	N/A		-	N/A			NA			N/A
Moment (Ft-lbs)	0	-1	97	1283	-37	736	2891	-13	27	0
Live Load Deflection (in)	-0.003*	-		0.006*			0.054*	1		-0.020*
Total Load Deflection (in)	-0.009*		2	0.021*			0.069*	1		-0.026*

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

ALTERNATE span loading on even # spans										
_	1'3'		<u> </u>	12' 1 3/4"		<u> </u>	12' 1 3/4"			1'3"
Member Reaction (ibs)	-	1436			31	03		10	07	-
Loads to Supports (ibs)	1000	14	136	-	31	03		10	07	
Shear used for design (lbs)	-	-24	955	-	-1549	1096	- 4	-514	37	-
Shear at support node (ibs)	_	-203	1233	-	-1828	1275		-692	315	-
Shear at span point load (lbs)	N/A		-	N/A			N/A			N/A
Moment (Pt-ibs)	0	-1	27	2891	-37	736	1283	-1	97	0
Live Load Deflection (in)	-0.020*		-	0.054*			0.006*		-	-0.003*
Total Load Deflection (In)	-0.026*			0.069*			0.021*			-0.000*

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

ADJACENT span loading on support 1										
	1:3'		A	12' 1 3/4"			12' 1 3/4'			1:3*
Member Reaction (lbs)	-	15	555	-	30	94	-	10	09	-
Loads to Supports (lbs)		15	555	170	30	94	77.	10	09	17
Shear used for design (ibs)	1000	-37	962		-1542	1095	- 22	-515	37	0.00
Shear at support node (lbs)	***	-315	1240	**	-1820	1274	56	-694	315	-
Shear at span point load (ibs)	N/A		20	N/A			N/A			N/A
Moment (Ft-lbs)	0	-1	97	2858	-37	19	1289	-1:	97	0
Live Load Deflection (in)	-0.019*		-0.0	0.053*		. 1	0.006*			-0.003*
Total Load Deflection (in)	-0.025*		-	0.068*			0.021*			-0.009*

1.0 Daad + 0.75 Floor + 0.75 Snow (LDF = 1.15)

ADJACENT span loading on support 2										
	1.3		A	12' 1 3/4"			12' 1 3/4"			1'.3"
Member Reaction (lbs)	-	1:	366	-	37	95	-	13	66	-
Loads to Supports (lbs)	120	11	366	127	37	95		13	66	7/2
Shear used for design (ibe)	100	-24	885		-1619	1619		-885	24	
Shear at support node (lbs)	-	-203	1163	-	-1897	1897		-1163	203	-
Shear at span point load (lbs)	N/A		20	N/A		-	N/A			N/A
Moment (Ft-lbs)	0		127	2559	-48	584	2559	-13	27	0
Live Load Deflection (in)	-0.015*		-	0.040*			0.040*			-0.015
Total Load Deflection (In)	-0.021*			0.055*			0.055*	W .		-0.021

1.0	Dead	+	0.75	Floor	+ 0.75	Snow	(LDF = 1.	15)

ADJACENT span loading on support 3							
5000 200 000 6	1'3'	A	12' 1 3/4"	A .	12' 1 3/4"	A	1'3"
Member Reaction (lbs)	-	1009	-	3094	-	1555	-

Date: 04/15/2024 Job Code: 718 Remington Street Page 25 of 57

Loads to Supports (lbs)	-	1009		44	3094		**	15	55	-
Shear used for design (lbs)		-37	515	**	-1095	1542	2	-962	37	7 mm
Shear at support node (ibs)	-	-315	694	-	-1274	1820	-	-1240	315	-
Shear at span point load (lbs)	N/A		-	N/A			N/A			N/A
Moment (Pt-lbs)	0	-1	97	1289	-37	119	2856	-11	97	0
Live Load Deflection (in)	-0.003*		-01	0.006"		4/-	0.053*	-		-0.019
Total Load Deflection (In)	-0.009*		2	0.021*			0.068*			-0.025

1.0 Dead + 0.6 Wind (LDF = 1	

Loading On All Spans										
	1'3'		<u> </u>	12' 1 3/4"		<u> </u>	12' 1 3/4"			1'3"
Member Reaction (lbs)	-	8	78	-	2230		-	878		-
Loads to Supports (lbs)	0.00	8	78		2230		**	878		
Shear used for design (lbs)	-	-22	528		-951	951	-	-528	22	-
Shear at support node (fbs)	-	-186	692	-	-1115	1115		-692	186	-
Shear at span point load (lbs)	N/A		-	N/A			NA		-	N/A
Moment (Pt-lbs)	0	-1	16	1493	-2686		1493	-116		0
live Load Deflection (in)	-0.006*			0.017*			0.017*			-0.006*
Total Load Deflection (in)	-0.012"		40	0.032*			0.032*			-0.012*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ALTERNATE span loading on odd # spans											
-	1'3'				A		12' 1 3/4"			1'.3"	
Member Reaction (ibs)	2	4	69	-			-	834			
Loads to Supports (lbs)	170	4	69	-						-	
Shear used for design (lbs)		-22	203	-	-512	899	-	-580	11	-	
Shear at support node (lbs)	200	-186	283	**	-592	1063	14	-744	90	100	
Shear at span point load (lbs)	N/A		-	N/A	-		N/A	N/A -		N/A	
Moment (Ft-lbs)	0	-1	16	439	-11	993	1805	-56		0	
Live Load Deflection (in)	0.004*		**	-0.013"			0.029*		-	-0.010*	
Total Load Deflection (in)	-0.002*			-0.005"			0.045*	~		-0.016*	

1.0 Dead + 0.6 Wind (LDF = 1.6)

ALTERNATE span loading on even # spans										
	1'3'		<u> </u>	12' 1 3/4"			12' 1 3/4'			1'3"
Member Reaction (lbs)		8	34	-	1655			469		-
Loads to Supports (lbs)	- 2	8	34	1227	1655			469		72
Shear used for design (ibs)	-70	-11	580		-899	512	-	-203	22	
Shear at support node (ibs)	-	-90	744	**	-1063	592	-	-283	186	-
Shear at span point load (bs)	N/A		-	N/A	-		N/A	- 1		N/A
Moment (Ft-ibs)	0		56	1805	-19	-1993 439		-116		0
Live Load Deflection (in)	-0.010°		-				-0.013°			0.004*
Total Load Deflection (in)	-0.016*			0.045*			-0.005*			-0.002*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 1										
	1'3'		A	12' 1 3/4"			12' 1 3/4"	A		1'3"
Member Reaction (ibs)	-	g	36	-	1847		#	47	ra 📗	-
Loads to Supports (ibs)	_	9.	36	-	16	47		470		-
Shear used for design (lbs)	-	-22	588	23	-893	511	-	-204	22	22
Shear at support node (lbs)		-186	750	**	-1057	591		-284	186	
Shear at span point load (ibs)	N/A		40	N/A			NA			N/A
Moment (Ft-lbs)	0	-1	16	1776	-19	-1978		-1	16	0
Live Load Deflection (in)	-0.010°		2	0.029*			-0.013*			0.004*
Total Load Deflection (in)	-0.016°		-	0.044*			-0.005*			-0.002

1.0 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 2										
	1'3'		A			<u> </u>	12' 1 3/4'	_		1'3"
Member Reaction (ibs)		7	76		2245			77	5	0.00
Loads to Supports (ibs)	-	7	75		22	45		775		-
Shear used for design (ibs)	_	-11	520	-	-958	958	9	-520	-11	-
Shear at support node (lbs)		-90	685	20	-1123	1123	22	-685	90	7/2
Shear at span point load (lbs)	N/A		70	N/A	-		NA			N/A
Moment (Ft-lbs)	0	4	56	1519	-27	-2716 1519		-56		0
Live Load Deflection (in)	-0.007°		4	0.017*		-	0.017*		-	-0.007*
Total Load Deflection (in)	-0.013*			0.033*			0.033*	2		-0.013

1.0 Doed + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 3										
	1'3'		.	12' 1 3/4"	3/4"		12' 1 3/4"	_		1'3"
Member Reaction (lbs)	_	4	70	-	1647 1847		= =	936		-
Loads to Supports (lbs)	-	4	70	-						-
Shear used for design (ibs)		-22	204	**	-511	893	**	-586	22	99.
Shear at support node (lbs)	-	-186	284	20	-591	1057	- 4	-750	186	- 2
Shear at span point load (lbs)	N/A		-	N/A	-		NA			N/A
Moment (Ft-lbs)	0	-1	16	444	-1	-1978 1776		-116		0
Live Load Deflection (in)	0.004*		-				0.029*			-0.010*
Total Load Deflection (in)	-0.002*		2	-0.005"			0.044*			-0.016*

0.6 Dead + 0.6 Wind (LDF = 1.5)

Loading On All Spans										
The second desired the desired to the second	1'3'		<u> </u>	12' 1 3/4"		\	12' 1 3/4"		<u> </u>	1'3"
Member Reaction (lbs)	-	70	708		1799		**	708		-
Loads to Supports (lbs)	-	70	28		17	99		7	08	
Shear used for design (ibs)	**	-18	426		-767	767		-426	18	-
Shear at support node (lbs)		-150	558	-	-899	899	-	-558	150	-
Shear at span point load (ibe)	N/A			N/A			N/A	1 2		N/A
Moment (Ft-lbs)	0	-6	ч	1204	-21	166	1204		14	0
Live Load Deflection (in)	-0.006°		-	0.017*		- 1	0.017*		-	-0.006*

Date: 04/15/2024 Job Code: 718 Remington Street Page 26 of 57

	-0.010*		0.026*		0.026*		-0.010*
Total Load Deflection (in)	-0.010		0,026	-	0.026	-	-0,010
.6 Deed + 0.6 Wind (LDF = 1.6)							
ALTERNATE span loading on odd # spans							
_	1'3'	A	12' 1 3/4"		12' 1 3/4'		1'3"
Member Reaction (lbs)	-	299	-	1223		684	-
oads to Supports (ibs)		299	120	1223		664	- 2
Shear used for design (lbs)		-18 101	-	-328 715		-478 8	-
ihear at support node (lbs) ihear at span point load (lbs)	N/A	-150 149	N/A	-376 847	N/A	-610 54	N/A
fornent (Ft-lbs)	0	-94	163	-1473	1518	-34	0
live Load Deflection (in)	0.004*		-0.013"	-	0.029*		-0.010*
otal Load Deflection (in)	0.000*		-0.007"		0.039*	-	-0.014°
	70						
.8 Deed + 0.6 Wind (LDF = 1.8)	-						
ALTERNATE span loading on even # spans							
_	1'3'		12' 1 3/4"	_	12' 1 3/4"	_ A	1'3"
fember Reaction (lbs)	-	664	-	1223		299	. **
oads to Supports (lbs)		664		1223		299	-
thear used for design (ibs)	-	-6 478	-	-715 328		-101 18	
ihear at support node (lbs)	N/A	-54 610	N/A	-847 376	N/A	-149 150	N/A
thear at span point load (lbs) foment (Ft-lbs)	0	-34	151B	-1473	163	-94	0 0
Ive Load Deflection (in)	-0.010°	-34	0.029*	-1473	-0.013*	- 34	0.004*
'otal Load Deflection (in)	-0.014	-	0.039*		-0.007*	- 1	0.000*
and an							
.6 Dead + 0.6 Wind (LDF = 1.6)							
	1						
ADJACENT span loading on support 1	1'3'	_	12' 1 3/4"	_	12' 1 3/4"	_	1'3"
fember Reaction (lbs)		766		1216		300	-
oads to Supports (ibs)	-	766	-	1216		300	
ihear used for design (lbs)	-	-18 484	*	-709 327	- 4	-102 18	-
ihear at support node (bs)	-	-150 616	100	-841 375	22	-150 150	100
Shear at span point load (lbs)	N/A	-	N/A		N/A	-	N/A
Noment (Ft-lbs)	0	-94	1490	-1458	167	-94	0
ive Load Deflection (in)	-0.010*	-	0.029*	-	-0.013*	-	0.004*
otal Load Deflection (in)	-0.013*	-	0,038*		-0.007*		0.000*
.8 Daad + 0.6 Wind (LDF = 1.6)							
ADJACENT span loading on support 2							
_	1'3'	_ A	12' 1 3/4"		12' 1 3/4'	_ A	1'3"
Member Reaction (ibs)		606	-	1814		605	-
oads to Supports (ibs)		606	**	1814		605	
Shear used for design (ibs)	-	-6 418		-774 774	- 8	418 8	-
Shear at support node (ibs)	-	-54 551	**	-907 907		-551 54	- 100
Shear at span point load (ibs)	N/A	-	N/A		N/A		N/A
Vioment (Ft-ibs) Live Load Deflection (in)	-0.007*	-34	1230 0.017*	-2196	1230 0.017*	-34	-0.007*
Fotal Load Deflection (in)	-0.010°		0.027*		0.027*		-0.010*
The state of the s							
.8 Dead + 0.6 Wind (LDF = 1.8)	_						
	1						
ADJACENT spen loading on support 3	1'3'		12' 1 3/4"	_	12 1 3/4	_	1'3"
fember Reaction (fbs)		300	12 139	1216	16 1 049	766	
oads to Supports (lbs)		300	_	1216		766	_
Shear used for design (lbs)		-18 102	-	-327 709		-484 18	
Shear at support node (ibs)		-150 150	**	-375 841		-616 150	(90)
Shear at span point load (ibs)	N/A	-	N/A		N/A		N/A
fornent (Ft-lbs)	0	-94	187	-1458	1490	-94	0
live Load Deflection (in)	0.004*	-	-0.013"		0.029*	-	-0.010*
Total Load Deflection (in)	0.000*	-	-0.007"	-	0.038*	-	-0.013*
.D Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (Li	JF = 1.6)						
oading On All Spans							
	1'3'	_	12' 1 3/4"		12' 1 3/4'	_	1'3"
flember Reaction (lbs)	-	1827	-	4841		1827	-
oads to Supports (lbs)	-	1827	-	4641	**	1827	-
Shear used for design (ibs)	-	-45 1098	-	-1978 1978	-	-1098 45	
Shear at support node (lbs)	-	-387 1440		-2320 2320	-	-1440 387	
Shear at span point load (ibs)	N/A		N/A		N/A		N/A
Noment (Ft-Ibs)	0 000*	-242	3107 0.052*	-5588	3107	-242	-0.020*
ive Load Deflection (in) Total Load Deflection (in)	-0.020* -0.026*	- 1	0.052*		0.052*		-0.026*
and an annual state of the stat	0.000		0.301		0.007		9,020
.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LI	OF = 1.6)						
ALTERNATE apan loading on odd # apana							
fambar Decation (the)	1'3'	4010	12' 1 3/4"	3534	12 1 3/4	(710	1'3"
Member Reaction (ibs)	-	1040	-		-	1743	-
coads to Supports (ibs)		1040	-	3534	-	1743	-
Shear used for design (ibs)	-	-45 474	-	-1135 1878 -1314 2330	-	-1198 24	-
Shear at support node (ibs) Shear at span point load (ibs)	N/A	-387 653	NA	-1314 2220	N/A	-1540 203	N/A
Aoment (Pt-lbs)	O O	-242	1075	-4256	3704	-127	0
ive Load Deflection (in)	0.000*		-0.013"		0.076*	-167	-0.027*
otal Load Deflection (in)	-0.006*	-	0.013*		0.091*		-0.033*
	0F = 1.60						
0 Daad + 0.45 Wind + 0.75 Floor + 0.75 Snow (LI							
.0 Deed + 0.45 Wind + 0.75 Floor + 0.75 Snow (LI NLTERNATE spen loading on even # spens	1						

Date: 04/15/2024 Job Code: 718 Remington Street Page 27 of 57

Loads to Supports (ibs)		17	1743		1743		3534		**	10	40	-
Shear used for design (lbs)		-24	1198		-1878	1135	2	-474	45	200		
Shear at support node (ibs)	-	-203	1540	-	-2220	1314	-	-653	387	-		
Shear at span point load (lbs)	N/A		-	N/A			N/A		-	N/A		
Moment (Pt-lbs)	0	-1	27	3704	-42	256	1075	-2	42	0		
Live Load Deflection (in)	-0.027*		-	0.076*		40	-0.013*	-	-	0.000		
Total Load Deflection (In)	-0.033*		27	0.091*			0.013*		2	-0.006		

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

ADJACENT span loading on support 1										
	1'3'		A	12' 1 3/4"		A	12' 1 3/4"			1'3"
Member Reaction (ibs)	**	19	139	**	35	20		10	43	-
Loads to Supports (ibs)		15	139	98.0	35	i20		10	43	
Shear used for design (lbs)		-45	1210		-1866	1133	-	477	45	-
Shear at support node (fbs)	-	-387	1552	427	-2208	1312		-656	387	-
Shear at span point load (bs)	N/A		-	N/A			NA		-	N/A
Moment (Ft-lbs)	0	-2	42	3648	-42	227	1085	-2	42	0
Live Load Deflection (in)	-0.026*		-	0.074*			-0.012*			0.000*
Total Load Deflection (in)	-0.032"		40	0.090*			0.013*			-0.006*

1.0 Deed + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

ADJACENT span loading on support 2										
	1'3'		<u> </u>	12' 1 3/4"			12' 1 3/4"			1'.3"
Member Reaction (ibs)		16	328	-	46	669	-	16	28	
Loads to Supports (lbs)		16	328		46	169		16	28	-
Shear used for design (ibs)	-	-24	1084	-	-1993	1993	-	-1084	24	-
Shear at support node (lbs)	-	-203	1428	84	-2335	2335	14	1426	203	94
Shear at span point load (lbs)	N/A		-	N/A			N/A			N/A
Moment (Ft-lbs)	0	-1	27	3158	-54	346	3156	-12	27	0
Live Load Deflection (in)	-0.021*		**	0.053*			0.053*			-0.021*
Total Load Deflection (in)	-0.027°			0.068*			0.068*			-0.027*

1.0 Dasd + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

ADJACENT span loading on support 3										
	1'3'		<u> </u>	12' 1 3/4"		_	12' 1 3/4'			1'3"
Member Reaction (lbs)		10	143	-	35	20		193	39	-
Loads to Supports (ibs)	120	10	143	9225	36	20	22	193	39	722
Shear used for design (ibs)		-45	477		-1133	1866	-	-1210	45	
Shear at support node (lbs)	-	-387	656	**	-1312	2208	-	-1552	387	-
Shear at span point load (lbs)	N/A		-	N/A		-	N/A			N/A
Moment (Ft-lbs)	0	-2	42	1085	-42	227	3648	-24	12	0
Live Load Deflection (in)	0.000*		-	-0.012"		-	0.074*			-0.026*
Total Load Deflection (in)	-0.006*		-	0.013*			0.090*	4		-0.032*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Floof (LDF = 1.6)

Loading On All Spans										
	1'3'			12' 1 3/4"		<u> </u>	12' 1 3/4"			1'3"
Member Reaction (lbs)	-	7	36		18	43	#	78	15	-
Loads to Supports (lbs)		7	56	-	19	43		78	15	-
Shear used for design (lbs)		-19	460	23	-826	828	-	-460	19	- 22
Shear at support node (lbs)	100	-162	603	**	-971	971		-603	182	
Shear at span point load (ibs)	N/A		4)	N/A			NA		. 1	N/A
Moment (Pt-ibs)	0	-1	01	1301	-23	339	1301	-1	01	0
Live Load Deflection (in)	-0.005*		2	0.013*		200	0.013*			-0.005*
Total Load Deflection (in)	-0.011*			0.028*			0.028*			-0.011*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.8)

ALTERNATE span loading on odd # spans										
	1'3'			12' 1 3/4"			12' 1 3/4"	_		1'3"
Member Reaction (ibs)		4	58	(**)	15	11		73	32	0.00
Loads to Supports (ibs)	-	4	58	**	15	11		7.	32	-
Shear used for design (lbs)	-	-19	218	4	-499	789	9	-499	-11	-
Shear at support node (lbs)	-	-162	298	20	-579	932	22	-642	90	100
Shear at span point load (lbs)	N/A		70	N/A		-	NA			N/A
Moment (Ft-lbs)	0	-1	01	506	-18	319	1533	-6	i6	0
Live Load Deflection (in)	0.003*		40	-0.010"			0.022*			-0.006
Total Load Deflection (in)	-0.003*			0.007*			0.038*			-0.014

1.0 Daed + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

ALTERNATE span loading on even # spans										
_	1'3'		A	12' 1 3/4"			12' 1 3/4'			1'3"
Member Reaction (lbs)	_	7	32	-	15	111		45	58	-
Loads to Supports (ibs)	-	7	32	-	15	11	H	46	58	-
Shear used for design (ibs)	000	-11	499	**	-789	499	**	-216	19	
Shear at support node (lbs)	100	-90	642		-932	579		-296	162	-
Shear at span point load (lbs)	N/A		-	N/A		-	NA		-	N/A
Moment (Pt-lbs)	0	4	56	1533	-18	319	506	-1	01	0
Live Load Deflection (in)	-0.008*		40	0.022*		-	-0.010°			0.003*
Total Load Deflection (in)	-0.014*		2	0.038*			0.007*			-0.003*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

ADJACENT span loading on support 1										
	1'3'		<u> </u>	12' 1 3/4"		A	12' 1 3/4"			1'3"
Member Reaction (ibs)	-	8	09	94	18	505		4	59	200
Loads to Supports (lbs)		8	09		18	505		4	59	
Shear used for design (ibs)	***	-19	503		-784	498		-217	19	-
Shear at support node (lbs)	-	-162	647	-	-928	578	-	-297	162	-
Shear at span point load (ibs)	N/A			N/A		_	N/A			N/A
Moment (Ft-ibs)	0	-1	01	1511	-18	808	510	-1	01	0
Live Load Deflection (in)	-0.007*		-	0.021*			-0.010°		-	0.003*

Date: 04/15/2024 Job Code: 718 Remington Street Page 28 of 57

Total Load Deflection (in)	-0.013*			0,037*			0.007*			-0.003*
.0 Deed + 0.45 Wind + 0.75 Floor + 0.75 Roof (LC	OF = 1.6)									
ADJACENT span loading on support 2										
-	1:31	_	A	12' 1 3/4"	_	A	12' 1 3/4'	-	.	1'3"
Member Reaction (lbs)	-		87	-		954 954		66		-
Loads to Supports (ibs) Shear used for design (ibs)		-11	454	127	-834	834	-	-454	11	72
Shear at support node (bs)		-90	597	-	-977	977		-597	90	-
Shear at span point load (ibs)	N/A	-30	387	N/A	-3//	311	N/A	-397		N/A
Moment (Ft-lbs)	0		56	1320	-21	362	1320	-	se a	0
Live Load Deflection (in)	-0.005*			0.013*			0.013*			-0.006"
Fotal Load Deflection (in)	-0.011*			0.029*			0.058.			-0.011*
our course senscion (iii)				V.UE			V.VEV			-0.011
.0 Deed + 0.45 Wind + 0.75 Floor + 0.75 Roof (LC	F = 1.6)									
ADJACENT span loading on support 3										
	1'3'	_	_	12' 1 3/4"	_		12 1 3/4"	_		1'3"
Member Reaction (bs)	-		59	-		505		80		
.oads to Supports (ibs)	140		59	-		505		80	_	-
Shear used for design (ibs)	-	-19	217	-	-498	784		-503	19	-
Shear at support node (lbs)	-	-162	297		-578	928		-647	162	-
Shear at spen point load (lbs)	N/A		75	N/A		-	N/A		-	N/A
Moment (Ft-lbs)	0	-1	101	510	-18	808	1511	-1	01	0
live Load Deflection (in)	0.003*		2	-0.010"		_	0.021*			-0.007*
Total Load Deflection (in)	-0.003*		-	0.007*			0.037*			-0.013*
	-72									
.0 Deed + 1.0 Snow (LDF = 1.15) Loading On All Spans	1									
Containing Oil Ail opalie	1'3'		A	12' 1 3/4"		A .	12 1 3/4"			1'3"
Member Reaction (lbs)		18	841		46	377		18	41	
oads to Supports (ibs)	-	10	841	(84)		577	-77	18	41	1,000
Shear used for design (lbs)	-	-46	1107	-	-1994	1994	-	-1107	48	-
Shear at support node (bs)	-	-390	1451	-	-2338	2338	-	-1451	390	
Shear at span point load (lbs)	N/A		-	N/A	Loco		N/A	1101	000	N/A
	70.03					004				
Moment (Ft-lbs)	0	-2	244	3131		631	3131	-2	44	0
ive Load Deflection (in)	-0.020*			0.052*		-	0.052*		-	-0.020*
Total Load Deflection (in)	-0.026*			0,068*		-	0.068*	-		-0.026*
.0 Dead + 1.0 Snow (LDF = 1.16) ALTERNATE span loading on odd # apana	1'3'		A	12 1 3/4"			12 1 3/4			1'3"
Member Reaction (ibs)		12	202		37	777		17	73	-
.oads to Supports (ibs)		12	202	**	37	777		17	73	
Shear used for design (ibs)	-	-48	600	-	-1308	1912		-1188	28	-
Shear at support node (lbs)	140	-390	812	**	-1520	2257	- 44	-1533	240	-
Shear at span point load (ibs)	N/A			N/A			N/A			N/A
Moment (Ft-lbs)	0	-2	244	1472	-45	548	3614	-1:	50	0
Live Load Deflection (in)	-0.004*		-	0.008*	_		0.072*			-0.026*
Fotal Load Deflection (in)	-0.010°	0		0.023*			0.087*		4	-0.032*
	_									
.0 Daed + 1.0 Snow (LDF = 1.15)	-									
ALTERNATE span loading on even # spans										
	1'3'		<u> </u>	12' 1 3/4"		<u> </u>	12 1 3/4"			1'3"
Member Reaction (ibs)	_	17	773	-	37	777	-	12	102	-
.oads to Supports (lbs)	_	17	773	-	37	777	-	12	102	_
Shear used for design (lbs)		-28	1188		-1912	1308		-600	46	0.00
Shear at support node (lbs)		-240	1533	**	-2257	1520	н	-812	390	(1980)
Shear at span point load (lbs)	N/A		-	N/A			N/A			N/A
Moment (Ft-ibs)	0	- 4	150	3614	.41	548	1472	-2	44	0
Live Load Deflection (in)	-0.026*			0.072*	_		0.008*	- "		-0.004*
	-0.028*			0.072*			0.008*			-0.004*
Total Load Deflection (in)	40.032			0.087			0.023			-0.010
.0 Dead + 1.0 Snow (LDF = 1.15)	1									
ADJACENT span loading on support 1	1'3'		_	10' 1 5'4"	-	_	12' 1 3/4"			1'3"
Member Reaction (lbs)	13		332	12' 1 3/4"		766	16 (3/9"	12	04	1.3
	1000		332			766		12		7.00
Loads to Supports (lbs)	-			-			**			-
	-	-46	1198	-	-1903			-602	46	
Shear used for design (ibs)	200	-390	_	1997	-2247		=	-814		
Shear used for design (bs) Shear at support node (bs)		-		N/A	_		N/A		_	N/A
Shear used for design (ibs) Shear at support node (ibs) Shear at span point load (ibs)	N/A		244	3568	-48	525	1480	-2	44	0
Shear used for design (ibs) Shear at support node (ibs) Shear at spen point loed (ibs) Moment (Ft-lbs)	0	-2		0.070*		-	0.008*			-0.004°
Shear used for design (ibs) Shear at support node (ibs) Shear at span point load (ibs)			-				0.023*			-0.010*
Shear used for design (be) Shear at support node (be) Shear at support load (be) Moment (F-Le) Live Load Deflection (in)	0		-	0.086*	_					
Shear used for design (ibs) Shear at support node (ibs) Shear at spen point loed (ibs) Moment (Ft-lbs)	0 -0.025*		-	0.086*						
Sither used for deelign (bits) Shear at support node (bits) Shear at sex point load (bits) Idoment (Fri-bits) Jev Load Defloction (in) Total Load Defloction (in)	-0.025* -0.031*		-				12:1 2/4:			1104
Sither used for design (ba) Shear at support node (ba) Shear at spen point load (ba) Shear at spen point load (ba) Moment ((Fi-ba) Live Load Deflection (in) Total Load Deflection (in) .0 Dead + 1.0 Show (LDF = 1.16)	0 -0.025*		_	0.086*	_	_	12 1 3/4	10	ao I	1'3"
Sinter used for design (ba) Shear at support node (ba) Shear at support node (ba) Moment (FR-ba) Live Load Deflection (in) Total Load Deflection (in) .0 Dead + 1.0 Snow (LDF = 1.18) ADJACENT span loading on support 2 Momber Reaction (bs)	-0.025* -0.031*	16	590		47	700	12 1 3/4	16		1'3"
Sinter used for design (ba) Sinter at support node (ba) Sinter at support node (ba) Sinter at support node (ba) Mommot (F-laa) Live Load Deflection (in) Total Load Deflection (in) Load Deflection (in) Load Deflection (in) ADJACERT span loading on support 2	-0.025* -0.031*	16	980 S80		47	700	12' 1 3/4'	16	80	1'3"
Sither used for design (bis) Shear at support node (bis) Shear at spap point load (bis) Shear at spap point load (bis) Moment (P-tais) Jee Load Delitection (in) Total Load Delitection (in) Total Load Delitection (in) ADJACENT span loading on support 2 Member Reaction (bis) Shear used for design (bis) Shear used for design (bis)	-0.025* -0.031*	16	580 580 1095		47 47 -2005	700 700 2005	12 1 3/4*	16 -1095	28	1'3"
Sinter used for design (ba) Shear at support node (ba) Shear at spen point load (ba) Moment (F-ba) Low Load Delection (n) Total Load Delection (n) Total Load Delection (in) ADJACENT spen loading on support 2 Member Reaction (ba) Loads to Supports (bb) Shear used for design (ba)	0 -0.025' -0.031'	16	980 S80	12 134*	47	700 700 2005	-	16	28	-
Sither used for design (bis) Shear at support node (bis) Shear at spap point load (bis) Shear at spap point load (bis) Moment (P-tais) Jee Load Delitection (in) Total Load Delitection (in) Total Load Delitection (in) ADJACENT span loading on support 2 Member Reaction (bis) Shear used for design (bis) Shear used for design (bis)	0 -0.025* -0.081*	16 16 -28 -240	680 680 1085	12 13/4"	47 -2005 -2350	700 700 2005 2350	 N/A	-1095 -1440	28 240	- - - - N/A
Sither used for design (ba) Shear at support node (ba) Shear at support node (ba) Shear at spen point load (ba) Moment ((F-l-ba) Lvo Load Deflection (in) Total Load Deflection (in) Total Load Deflection (in) ADJACETT spen loading on support 2 Momber Reaction (ba) Loads to Supports (ba) Shear used for design (ba) Shear used for design (ba) Shear at spen point load (ba) Moment (F-l-ba)	1'3'	16 16 -28 -240	580 580 1095	12 134*	47 -2005 -2350	700 700 2005	-	-1095 -1440	28	 N/A 0
Sithear used for design (bas) Sithear at support node (bas) Sithear Sithear (bas) Sithear Sithear (bas) Sithear used for design (bas) Sithear at support node (bas) Sithear at support node (bas)	0 -0.025* -0.081*	16 16 -28 -240	680 680 1085	12 13/4"	47 47 -2005 -2350	700 700 2005 2350	 N/A	-1095 -1440	28 240	- - - - N/A

Date: 04/15/2024 Job Code: 718 Remington Street Page 29 of 57

Loads to Supports (ibs)		12	04	**	37	86		18	32	-
Shear used for design (lbs)	-	-48	602	170	-1308	1903	=	-1198	46	-
Shear at support node (lbs)	-	-390	814	**	-1518	2247	**	-1542	390	-
Shear at span point load (lbs)	N/A		4	N/A		-	N/A			N/A
Moment (Pt-lbs)	0	-2	44	1480	-45	25	3568	-24	64	0
Live Load Deflection (in)	-0.004*	12	2	0.008*		200	0.070*	. 2	2	-0.025
Total Load Deflection (In)	-0.010*			0.023*			0.086*			-0.031*

ForaWEB v3 7, Dealign Engine Version V8 4.0 40

Date: 04/15/2024 Job Code: 718 Remington Street Page **30** of **57**

Appendix 2 LSSR410Z Simpson Strong-Tie Connector

Date: 04/15/2024 Job Code: 718 Remington Street Page **31** of **57**

\mathbf{H}
0
Ţ
C
ect
_
(D)
Se
ger
br
2
Har
_

dol	Model	Quantity	TF Fasteners	Face Fasteners	Joist Fasteners
716 Remington	LSSR410Z	1	ī	(<u>26) 0.162 x 2 1/2 Nail</u> (<u>N16)</u>	(1 <u>8) 0.162 x 2 1/2 Nail</u> <u>(N16)</u>
		T.	Fastener Totals		
		(44) 0.11	(44) 0.162 x 2 1/2 Nail (N16)		

2

Header 1

Date: 04/15/2024 Job Code: 718 Remington Street Page 32 of 57

3D Model

716 Remington inputs

Input

SGL	
ŧ	
S	

Connection Type	Joist (Flush Top)	
Country	USA	

Job Settings

Hanger Type	Download Duration	Uplift Duration	Job ID	Quantity
All Types	Quake/Wind (160)	Quake/Wind (160)	716 Remington	ŀ

	Number of Piles	٠
	Depth	12 (11 1/2")
	Width	6x (5 1/2")
	Lumber Species	DF (Douglas Fir)
Header	Member Type	Solid Sawn

Upliff (ASD)	478
Download (ASD)	929
Rough Lumber	No
Member ID	Joist 1
Number of Plies	·
Depth	12 (11 1/4")
Width	4x (3 1/2")
Lumber Species	DF (Douglas Fir)
Member Type	Solid Sawn

Hanger Options

	Center	Centered (No Offset)	0	No Sloped	0	Normal	7-	No Sloped	0	skew
lush	n High, Low, Center Flush	Offset Direction	Top Flange Slope (Degrees)	Sloped Down Type Top Flange Slo	pe Top Flange Bend (Degrees)	Open Closed Type	Slope (Degrees)	Slope Type	Skew (Degrees)	· Type

716 Remington output

Output

Result

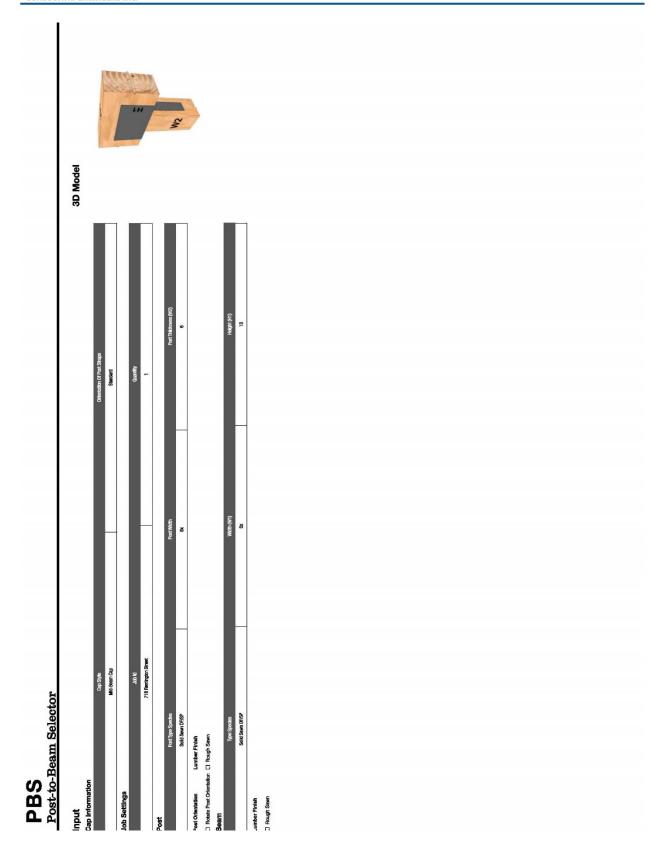
AHZ Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **33** of **57**

Show Optimized Models: Yes

2	Model	Installed Cost	Width	Height	Bearing	TF Depth	TF Fasteners	Face Fasteners	Joist Fasteners	Download (lbs)	Uplift (lbs)
	LSSR410Z	Lowest	3.563	8.938	1.875	ï		(26) 0.162 x 2 1/2 Nail (N16)	(1 <u>8</u>) <u>0.162 x 2 1/2 Naii</u> (N16)	3015	695
0	LSSR410Z	Lowest	3.563	8.938	1.875	3		(22) 0.162 x 2 1/2 Nail (N16)	(18) 0.162 x 2 1/2 Naii (N16)	2365	695
0	U410X SLU7	+25.00%	3.563	8.375	2		1	(14) <u>0.148 x 3 Nail</u> (10d Common).	(6) 0.148 x 3 Nail (10d Common)	2600	730
0	U410X SLU7	+28.00%	3.563	8.375	2	ī	r	(14) <u>0.148 x 1.5 Nail</u> (N1 <u>0)</u>	(6) 0.148 x 3 Nail (10d Common)	2105	730
0	U410X SLU7	+28.00%	3.563	8.375	2	Ŧ		(14) 0.162 x 3 1/2 Nall (18d Common).	(6) 0.148 x 3 Nail (10d Common)	2900	730
0	HHUS48X SLU7	+42.00%	3.625	7.125	e S	ř	r	(22) 0.148 x 3 Nail (10d Common)	(8) 0.148 x 3 Nail (10d Common)	3310	1080
0	HHUS48X SLU7	+42.00%	3.625	7.125	3	1	7	(22) 0.162 x 3 1/2 Nail (16d Common)	(8) 0.162 x 3 1/2 Nail (16d Common)	3885	1265
0	U414X SLU7	+45.00%	3.563	10	2	ř		(16) <u>0.148 x 3 Nail</u> (10d Common),	(6) 0.148 x 3 Nail (10d Common)	2900	730
0	U414X SLU7	+46.00%	3.563	10	2	q	,	(16) 0.162 x 3 1/2 Nail (16d Common).	(6) 0.148 x 3 Nail (10d Common)	3000	730
0	NA14X SLU7	+46.00%	3.563	10	5	r		(16) <u>0.148 x 1.5 Nail</u> (N10)	(6) 0.148 x 3 Nail (10d Common)	2330	730

1. All loads are displayed in units of pounds and based on Allowable Stress Design


2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

Date: 04/15/2024 Job Code: 718 Remington Street Page **34** of **57**

Appendix 3

APT8 Simpson Strong-Tie Connector

Date: 04/15/2024 Job Code: 718 Remington Street Page **35** of **57**

Date: 04/15/2024 Job Code: 718 Remington Street Page **36** of **57**

Show Optimized Models: No	Notes?	This product is not load rated. Install in pairs	Loade apply only when used in pairs		Loads apply only when used in pairs			This product is not load rated . Install in pairs				Loads apply only when used in pairs. For single part installations, use half the listed values.	Louds apply only when used in pairs. For single part installations, use haif the listed values.	Loads apply only when used in pains. For single part installations, use half the islad values.	Loads apply only when used in pains. For single part installations, use haif the listed values.	Loads apply only when used in pairs. For single part installations, use haif the listed values.	Loads apply only when used in pains. For single part Installations, use haif the listed values.		Loads apply only when used in pairs		Velues shown for standard installation of a continuous beam		Values shown for standard installation of a continuous beam	Loade apply only when used in pairs. For single part installations, use haif the listed values.	Loads apply only when used in pains. For single part installations, use haif the listed values.	
	Fastering Method ⁹	Mele	N. S.	SDWH Screws	HellwSD Screws	Machine Bots	1	Halls	Machine Bots	SDWH Screws	Machine Bolis	SDMS22312DBB with STN22	SDMS2Z312DBB with STNZ2	SDMS223120B8 with STV22	SDMS22312DBB with STN22	SDMS223120B8 with STN22	SDWS223120B8 with STN22	Mactine Bots	Nation Screws	Helit/SD Screws	Dowel Pins or Machine Both	Machine Bots	Dowel Pins or Machine Botts	SDMS22312DBB with STN22	SDMS223120B8 with STN22	Mactine Bots
	Material / Coating ⁵	069	ZMAX®	Gray Puint	065	Gray Paint	089	O68	PC Black	Gray Paint	Gray Paint	ZMAXI® with black powder cost	ZMAX@ with black powder cost	ZMAX® with black powder cost	ZMAXCO with black powder cost	ZMAX(® with black powder coat	ZMAX/® with black powder cost	PC Black	ZMAXC® with black powder coat	ZNAX®	ZMAX®	Grey Paint	ZMXX88	ZMAX® with black powder cost	ZMAX® with black powder cost	Gray Paint
	Lateral Loads (Ib)12	,	886		2,075	i	1,825		,	3	ı		,	1,015	1,015		(*)		2,640	1,260	750	U	1,866	1,426	1,426	
	Total Download (100) (Ib) ^{1,2}	•	,	ř	,	TC.	·	274.2	,	8	ī	,		i i		1	190	ű	Sec.	ï	068'9	e	18,140	¥0		247
	UpER (160) (Ib) ^{1,2}	ŧ.	920	2,815	2,815	047,1	1,185		1,565	3,045	1,740	058	850	1,390	1,330	1,505	1,505	2,015	4,045	1,480	2,020	5,220	4,215	2,130	2,130	7,850
	Installed Cost	Lowest	+30%	7,89+	+78%	%ZB+	9,98+	+124%	+125%	+157%	+172%	+172%	+172%	*182%	%Z8I+	%66i+	%661+	%6EZ+	+254%	*589Z+	*477Z+	**108*+	+411%	+417%	+417%	+439%
	Models																									
Output Result		100	780AT	P9C218	828	P6216	828 	128T	8	PSCHIB	PS418	APST412	APVST412	-	F P	APSTB12	APVSTE10	SHS	ZOHOV	2800	CBT2Z-KT	TISH WELL	DF2F1E0	P APATR	BLOY	HBT3

Date: 04/15/2024 Job Code: 718 Remington Street Page **37** of **57**

Models	Installed Cost	Uplett (160) (lb) ^{1,2}	Total Download (100) (E) ^{1,2}	Lateral Loads (E) ^{1,2}	Material / Coating ⁶	Fastening Method ⁸	Notes ²
SSION	+673%	2,615	ă.	2,075	Stainless Steel	Nethar/SD Screws	Loads apply only when used in pairs
Ы	%T17+	2,585	14	815	PC Bleck	Machine Bots	Loads apply only when used in pairs
261935 CH8135	*522+	5,045	·		PC Bleack	Marthine Bolts	
METS.	+739%	15,425	í.		Gray Paint	Machine Bolls	
ISTS	+766%	10,850			Grey Paint	Machine Botts	
121201	%860+	2,585	4	815	069	Meahine Botts	Loads apply only when used in pairs
8800	+1,015%	5,546	33,275		Gray Paint	Machine Bolts	Load depends on post size
9700688D8578	+1,022%	6,785	33,275	·	Grey Paint	SDS Screws	Load depends on post size
1919HTQ	+1,059%	2,670		870	DOH	SDMH Screws	Loads apply only when used in pairs
OHSTOC	+1,117%	10,085	í	i	PC Black	Machine Bolts	
¥	%652,1+	2,565	a.	818	PC Bleck	Machine Botts	Loads apply only when used in pairs
OOGSV 8082.6 W1 = 5.5, W2 = 5.5	+1,282%				Available with Gray Paint (etd), PC Black, HDG, or SS. Spootly when ordering.	SDS Screws	Load depends on post size
559850	+1,308%	5,545	33,275		PC Black	Machine Bolts	Load depends on post size
1919HT	+1,310%	2,586		816	089	Mechine Botts	Louds apply only when used in pains
CCBX WI = G.S, W2 = 5.5	+1,338%		·		Available with Gray Paint (std), PC Black, HDG, or SS. Specify when ordering.	Machine Botts	Losal depends on post size
OCOGN. SIGNES 5.5	+1,367%	,			Available with Gray Paint (etd), PC Black, HDG, or SS. Specify when ordering.	SDS Screws	Load depends on post site
OCTX W1 = 55, W2 = 5,5	*1178/1+		ı	3.	Available with Gray Paint (etd.), PC Blank, HDG, or SS. Specify when ordering.	Machine Bolls	Load depends on post size
осивнос	+1,513%	5,545	33,275		БОН	Machine Botts	Load depends on post size
OOO86-5-1152 GHDQ	+1,641%	6,785	33,275	×	HDG	SDS Scraws	Load depends on post size
92200	+3,311%	4,040	30,250	9	PC Bleck	Machine Bolts	Load depends on post size
COORCES SINCE 5.55 W1 = 5.55, W2 = 5.55	%EE5'L+	,	ă.	*	Statriless Steal	SDS Screws	Load depends on post size
COOR689-5D50.5	%162,7+	6,785	33,276		Statrilese Steel	SDS Screws	Load depends on post size
889200	Ŧ	5,545	33,275		Stalniess Steal	Machine Bolts	Load depends on post size
OCODK SDS2 8+DQ W1 = 55, W2 = 55	ī				ВСН	SDS Sorews	Loed depends on post size
OCCESS 8193 8400 W1 = 65 W2 = 5.5	ē	t.		ě	Đ	SDS Sotems	Load depends on post size
Table Notes							

fraction approach recovered to remove or managed product incurrent search of the control of the

Date: 04/15/2024 Job Code: 718 Remington Street Page 38 of 57

Appendix 4

MPBZ™ Moment Post Base

Date: 04/15/2024 Job Code: 718 **Remington Street** Page 39 of 57

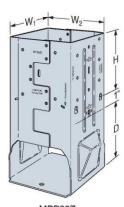
Simpson Strong-Tie® Wood Construction Connectors

MPBZ™

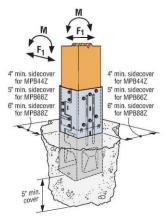
Moment Post Base

The patent-pending MPBZ is specifically designed to provide moment resistance for columns or posts. An innovative overlapping sleeve design encapsulates the post, helping to resist rotation around its base. It is available for 4x4, 6x6 and 8x8 posts. The MPBZ is ideal for outdoor structures, such as carports, fences and decks. Built-in stand-off tabs provide the required 1" stand-off to resist decay of the post while eliminating multiple parts and assembly. Additionally, the MPBZ is available in ZMAX® as the standard finish to meet exposure conditions in many environments. For 10" stemwalls or round footings, see engineering letters, L-C-10MPBZ and L-C-MPBZ at strongtie.com.

Features:


- Internal top-of-concrete tabs
- · 1" standoff tabs
- · Additional holes provided to attach trim material
- · Weep hole provided for water drainage

Material: 12 gauge Finish: ZMAX coating


Installation:

- · Use all specified fasteners; see General Notes.
- · Install MPBZ before concrete is placed using embedment level indicators and form board attachment holes.
- · Place post on tabs 1" above top of concrete.
- Install Strong-Drive® SDS Heavy-Duty Connector screws, which are supplied with the MPBZ. (Lag screws will not achieve the same load.)
- · Concrete level inside the part must not exceed 1/4" above embedment line to allow for water drainage
- · Annual inspection of connectors used in outdoor application is advised. If significant corrosion is apparent or suspected. then the wood, fasteners and connectors should be evaluated by a qualified engineer or

Codes: See p. 13 for Code Reference Key Chart

MPB88Z (MPB44Z, MPB66Z similar)

Typical MPB66Z Nonreinforced Installation (others similar)

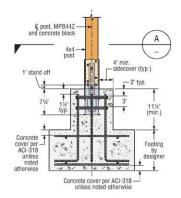
5" min. sidecover (typ.)

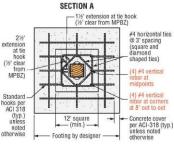
by designer

#4 horizontal ties @ 3" spacing (square and diamond shaped ties)

(4) #4 vertical

(4) #4 vertical


rebar at corners at 12' out to out


Concrete cover per ACI-318 (typ.) unless noted otherwise

© post, MPB66Z and concrete block

1" stand off

cover per ACI-318

SECTION B at tie hook (½° clear from MPBZ) hooks per ACI 318 - Concrete cover per ACI-318 (typ.) unless noted otherwise Footing by designer

MPB44Z Reinforced Concrete Footing

Footing (size and reinforcement) by designer. Standard hook geometry in accordance with ACI 318 unless noted otherwise.

MPB66Z Reinforced Concrete Footing

Concrete cover per ACI-318 - unless noted otherwise

Footing (size and reinforcement) by designer. Standard hook geometry in accordance with ACI 318 unless noted otherwise.

These reinforced MPBZ details are available on strongtie.com/mpbz.

C-C-2024 @ 2024 SIMPSON STRONG-TIE COMPANY INC.

AHZ Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544

Date: 04/15/2024 Job Code: 718 **Remington Street** Page 40 of 57

Simpson Strong-Tie® Wood Construction Connectors

MPBZ™

SIMPSON Strong-Tie

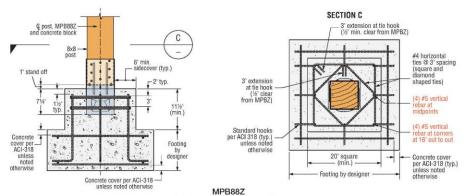
Moment Post Base (cont.)

These products are available with additional corrosion protection. For more information, see p. 16.

		Din	nensi	ons				Conci Allowable					od Assemb Allowable I		Rotational	onal
Model No.	Nominal Column Size		(in.)		Strong-Drive® SDS Screws	Upli	ft	Latera	al F ₁	Mome (ftl		Download	Download	Moment M	Stiffness (inlb./	Code Ref.
		W ₁ / W ₂	D	н		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	(100)	(160)	(ftlb.) (160)	rad.)	
								Nonreinforc	ed Concre	te						
					N/A		Wind an	d Seismic D	esign Cat	egory A&B	w.	,				
MPB44Z	4x4	31/16	71/4	71/4	(16) 1/4" x 21/2"	4,900	3,820	1,750	1,225	1,350	945	6,240	6,410	1,520	1,245,000	
MPB66Z	6x6	51/16	71/4	71/4	(24) 1/4" x 21/2"	5,815	5,815	3,435	2,405	2,680	1,875	9,360	10,855	3,730	2,405,000	IBC®,
MPB88Z	8x8	71/16	71/4	71/4	(36) 1/4" x 3"	11,860	9,315	7,200	5,560	4,160	2,910	15,120	17,690	4,560	5,515,000	1 - 2, 2,
							Sei	smic Design	Category	C-F						
MPB44Z	4x4	31/16	71/4	71/4	(16) 1/4" x 21/2"	4,785	3,350	1,535	1,075	1,180	830	6,240	6,410	1,520	1,245,000	
MPB66Z	6x6	51/16	71/4	71/4	(24) 1/4" x 21/2"	5,815	5,815	3,015	2,110	2,055	1,645	9,360	10,855	3,730	2,405,000	IBC, FL. LA
MPB88Z	8x8	71/16	71/4	71/4	(36) 1/4" x 3"	10,155	8,165	6,965	4,875	3,470	2,550	15,120	17,690	4,560	5,515,000	1, 2, 2,
							`	Reinforced	d Concrete	9			20 0		*	177
							Wind an	d Seismic D	esign Cat	egory A&B						
MPB44Z	4x4	31/16	71/4	71/4	(16) 1/4" x 21/2"	4,900	3,820	1,750	1,225	1,520	1,520	6,240	6,410	1,520	1,245,000	IDO
MPB66Z	6x6	51/16	71/4	71/4	(24) 1/4" x 21/2"	5,815	5,815	3,435	2,405	3,730	3,190	9,360	10,855	3,730	2,405,000	IBC, FL, LA
MPB88Z	8x8	71/16	71/4	71/4	(36) 1/4" x 3"	11,860	9,315	7,200	5,560	4,560	4,560	15,120	17,690	4,560	5,515,000	, ,, ,,
							Sei	smic Design	Category	C-F						
MPB44Z	4x4	31/16	71/4	71/4	(16) 1/4" x 21/2"	4,785	3,350	1,535	1,075	1,520	1,520	6,240	6,410	1,520	1,245,000	ID O
MPB66Z	6x6	51/16	71/4	71/4	(24) 1/4" x 21/2"	5,815	5,815	3,015	2,110	3,350	2,795	9,360	10,855	3,730	2,405,000	IBC, FL, LA
MPB88Z	8x8	71/16	71/4	71/4	(36) 1/4" x 3"	10,155	8,165	6,965	4,875	4,560	4,560	15,120	17,690	4,560	5,515,000	_, _,

- Loads may not be increased for duration of load.
 Higher download can be achieved by solidly packing grout in the 1" standoff area before installation of the post. Allowable download shall be based on either the wood post design or the concrete design calculated per code.
 Concrete shall have a minimum compressive strength of "c = 2,500 psi.
 Tabulated rotational stiffness accounts for the rotation of the base assembly attributable to deflection of the connector, fastener slip, and post deformation.
 Designer must account for additional deflection attributable to bending of the post.
 Multiply selsmic and wind ASD uplift and lateral load values by 1,43 or 1,67, respectively, to obtain LRFD capacities.
 In accordance with IBC, Section 1613.1, detached one- and two-family dwellings in Seismic Design Category (SDC) C may use "Wind and SDC A&B" allowable loads.
 Foundation of impressions are for anchorage only. Foundation design (size and reinforcement) by designer.

- allowable loads.


 7. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by designer.

 8. Allowable load shall be the lesser of the wood assembly or concrete allowable load.

 9. For loading simultaneously in more than one direction, the allowable load must be evaluated using the following equation: (Design Uplift / Allowable Uplift, or Design Download / Allowable Download) + (Design Moment / Allowable Moment) + (Design Lateral / Allowable Lateral) s 1.0.

 10. To account for shrinkage up to 3%, multiply rotational stiffness by 0.75. Reduction may be linearly interpolated for shrinkage less than 3%.

 11. Tabulated load values may be used for rough sawn lumber or larger size posts without reducin factors. Rough-size and larger-size posts shall be planed uniformly on all four sides such that centerline of post is concentric with the center line of MPBZ.

Reinforced Concrete Footing

Footing (size and reinforcement) by designer. Standard hook geometry in accordance with ACI 318 unless noted otherwise.

Date: 04/15/2024 Job Code: 718 Remington Street Page **41** of **57**

Appendix 5

ENERCALC Design Report

Date: 04/15/2024 Job Code: 718 Remington Street Page 42 of 57

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

> Printed: 14 APR 2024, 10:09PV File: Case1.ec6

Concrete Column

Lic.#: KW-06012537

Software copyright ENERCALC, INC. 1983-2020, Build:12:20.8.24

AHZ Consulting Engineers

DESCRIPTION: Pile Footing Structural

Code References

Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

Load Combinations Used: ASCE 7-16

General Information

fc : Concrete 28 day strength	=	3.0 ksi
F =	=	3,122.02 ksi
Density	=	150.0 pcf
В	=	0.850
fy - Main Rebar	=	60.0 ksi
É - Main Rebar	=	29,000.0 ksi
Allow, Reinforcing Limits		ASTM A615 Bars Used
Min. Reinf.	=	0.50 %
Max. Reinf.	=	8.0 %

Overall Column Height = 2.0 ft
End Fixity Top Pinned, Bottom Fixed

Brace condition for deflection (buckling) along columns :

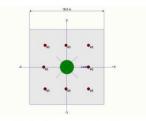
X-X (width) axis:

Unbraced Length for buckling ABOUT Y-Y Axis = 2.0 ft, K = 0.80

Y-Y (depth) axis:

Unbraced Length for buckling ABOUT X-X Axis = 2.0 ft, K = 0.80

Column Cross Section


Column Dimensions: 16.0in Square Column, Column Edge to

Rebar Edge Cover = 3.0in

Column Reinforcing: 4 - #5 bars @ corners,, 1 - #5 bars top &

bottom between corner bars, 1 - #5 bars left

& right between corner bars

Applied Loads

Entered loads are factored per load combinations specified by user.

Column self weight included : 533.33 lbs * Dead Load Factor AXIAL LOADS \dots

Axial Load at 2.0 ft above base, D = 0.7350, S = 2.10, W = 1.20 $\,\mathrm{k}$

BENDING LOADS . . .

Lat. Point Load at 0.0 ft creating Mx-x, D = 0.080, S = 0.250, W = 0.140 k Moment acting about Y-Y axisat 0.0 ft, D = 0.720, S = 2.250, W = 1.260 k-ft

DESIGN SUMMARY

Load Combina		+1.20D+1.6	0S+0 50W	Maximum SERVICE Lo	ad Reaction	٩	
Location of ma		1.200.1.0	1.987 ft	Top along Y-Y	0.0 k	Bottom along Y-Y	0.0 k
Maximum Stres Ratio = (Pu^2+	s Ratio Mu^2)^.5 / (PhiPn	^2+PhiMn^2)^.5	0.013:1	Top along X-X	0.0 k	Bottom along X-X	0.0 k
Pu =	5.482 k	φ * Pn =	413.544 k				
Mu-x = Mu-y =	0.0 k-ft 0.0 k-ft	φ * Mn-x = φ * Mn-y =	-0.1976 k-ft -0.07809 k-ft	Maximum SERVICE Lo Along Y-Y for load combinati	0.0 in a		
Mu Angle = Mu at Angle =	0.0 deg 0.0 k-ft	φMn at Angle =	0.6409 k-ft	Along X-X for load combinat	0.0 in a on :	t 0.0 ft above base	
Column Capacitic Pnmax : Nomina Pnmin : Nomina φ Pn, max : Us		al Capacity Axial Capacity	795.28 k k 413.544 k	General Section Inform ρ: % Reinforcing Reinforcing Area Concrete Area			θ = 0.8

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **43** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

	Printed: 14 APR 2024, 10:09PN
Concrete Column	File: Case1.ec6
Concrete Column	Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Lic. #: KW-06012537	AHZ Consulting Engineers
DESCRIPTION: Pile Footing Structural	

Governing Load Combination Results

Governing Factored	Moment	Dist. from	Dist. from Axial L			ad Bending Analysis k-ft						
Load Combination	X-X Y-Y	base ft	Pu (r Pn	δ×	δx* Mux	δУ	δy * Muy	Alpha (deg)	δMu	φMn	lization Ratio
+1.40D	Actual	1.99	1.78	413.54	1.000	0.00			0.000	0.00	0.64	0.004
+1.20D	Actual	1.99	1.52	413.54	1.000	0.00			0.000	0.00	0.64	0.004
+1.20D+0.50S	Actual	1.99	2.57	413.54	1.000	0.00			0.000	0.00	0.64	0.006
+1.20D+0.50W	Actual	1.99	2.12	413.54	1.000	0.00			0.000	0.00	0.64	0.00
+1.20D+1.60S	Actual	1.99	4.88	413.54	1.000	0.00			0.000	0.00	0.64	0.012
+1.20D+1.60S+0.50W	Actual	1.99	5.48	413.54	1.000	0.00			0.000	0.00	0.64	0.013
+1.20D+W	Actual	1.99	2.72	413.54	1.000	0.00			0.000	0.00	0.64	0.007
+1.20D+0.50S+W	Actual	1.99	3.77	413.54	1.000	0.00			0.000	0.00	0.64	0.009
+0.90D+W	Actual	1.99	2.34	413.54	1.000	0.00			0.000	0.00	0.64	0.000
+1.20D+0.20S	Actual	1.99	1.94	413.54	1.000	0.00			0.000	0.00	0.64	0.00
+0.90D	Actual	1.99	1.14	413.54	1.000	0.00			0.000	0.00	0.64	0.003

Maximum Reactions							Note: O	nly non-z	zero r	eactions a	re listed.
	X-X Axis	Reaction	k	Y-Y Axis	Reaction	Axial Reaction	My - End Mo	ments	k-ft	Mx - End	Moments
Load Combination	@ Base	@ Top		@ Base	@ Top	@ Base	@ Base	@ Top		@ Base	@ Top
D Only						1.268	0.000				
+D+S				0.000	0.000	3.368	0.000				
+D+0.750S						2.843	0.000				
+D+0.60W						1.988	0.000				
+D+0.450W						1.808	0.000				
+D+0.750S+0.450W				0.000	0.000	3.383	0.000				
+0.60D+0.60W						1.481	0.000				
+0.60D						0.761	0.000				
S Only						2.100	0.000				
W Only						1.200	0.000				

vv Only	1.200	0.000
Maximum Moment Reactions		Note: Only non-zero reactions are listed.

	Moment Abou	t X-X Axis	Moment Ab	out Y-Y Axis
Load Combination	@ Base	@ Top	@ Base	@ Top
D Only	0.000	k-ft		k-ft
+D+S	0.000	k-ft		k-ft
+D+0.750S	0.000	k-ft		k-ft
+D+0.60W	0.000	k-ft		k-ft
+D+0.450W	0.000	k-ft		k-ft
+D+0.750S+0.450W	0.000	k-ft		k-ft
+0.60D+0.60W	0.000	k-ft		k-ft
+0.60D	0.000	k-ft		k-ft
S Only	0.000	k-ft		k-ft
W Only	0.000	k-ft		k-ft

Maximum Deflections for Load Combinations

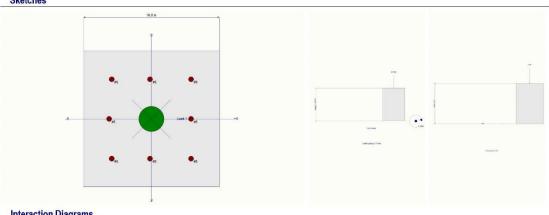
Load Combination	Max. X-X Deflection	n	Distance		Max. Y-Y Defle	ction	Distance	
D Only	0.0000 in		0.000	ft	0.000	in	0.000	ft
+D+S	0.0000 in		0.000	ft	0.000	in	0.000	ft
+D+0.750S	0.0000 in		0.000	ft	0.000	in	0.000	ft
+D+0.60W	0.0000 in		0.000	ft	0.000	in	0.000	ft
+D+0.450W	0.0000 in		0.000	ft	0.000	in	0.000	ft
+D+0.750S+0.450W	0.0000 in		0.000	ft	0.000	in	0.000	ft
+0.60D+0.60W	0.0000 in		0.000	ft	0.000	in	0.000	ft
+0.60D	0.0000 in		0.000	ft	0.000	in	0.000	ft
S Only	0.0000 in		0.000	ft	0.000	in	0.000	ft
W Only	0.0000 in		0.000	ft	0.000	in	0.000	ft

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **44** of **57**

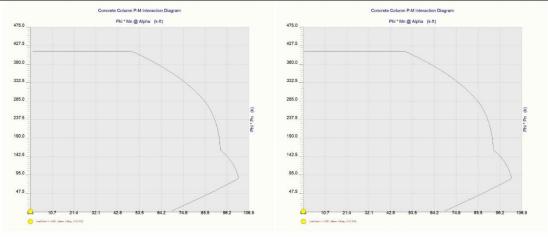
AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:


Printed: 14 APR 2024, 10:09PN

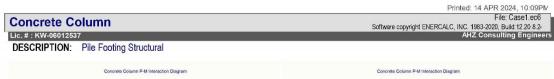
File: Case1.ec6
Software copyright ENERCALC, INC. 1983-2020, Build: 12.0.8.2
AHZ Consulting Engineers

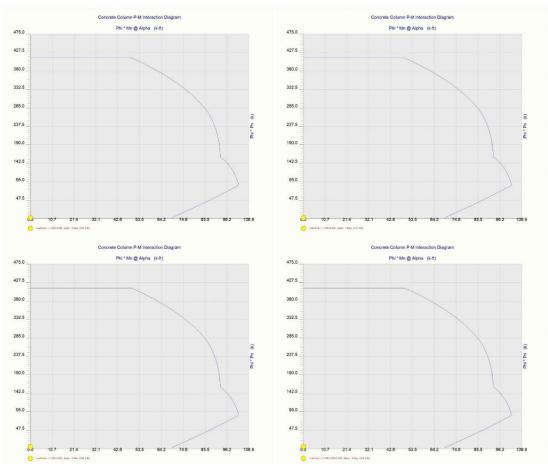

Concrete Column Lic. #: KW-06012537

DESCRIPTION: Pile Footing Structural

Sketches

Interaction Diagrams

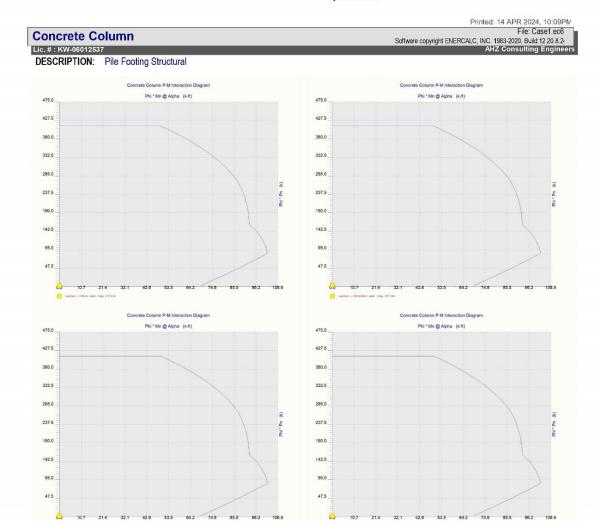



Date: 04/15/2024 Job Code: 718 Remington Street Page **45** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

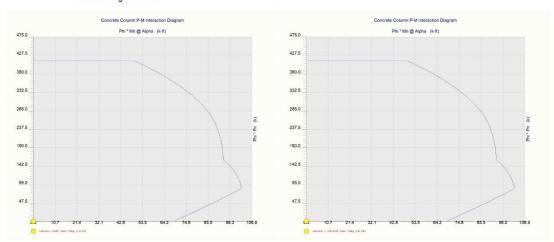


Date: 04/15/2024 Job Code: 718 Remington Street Page 46 of 57

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:


Date: 04/15/2024 Job Code: 718 Remington Street Page 47 of 57

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

Date: 04/15/2024 Job Code: 718 **Remington Street** Page 48 of 57

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

Printed: 14 APR 2024, 9:59PN

Genera	I Fo	ot	ing
--------	------	----	-----

Fille: Case1.ec6
Software copyright ENERCALC, INC. 1983-2020, Build: 12 20 8.2
AHZ Consulting Engineers

DESCRIPTION: Solar Pergola

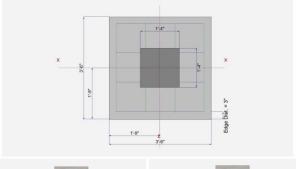
Code References

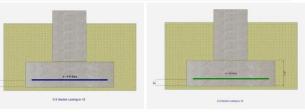
Calculations per ACI 318-11, IBC 2012, CBC 2013, ASCE 7-10

Load Combinations Used : ASCE 7-16

General Information

Material Prop					Soil Design Values		
fc : Concrete	28 day strength	=		3.0 ksi	Allowable Soil Bearing	=	1.50 ksf
fy: Rebar Yie	eld	=	6	0.0 ksi	Increase Bearing By Footing Weight	=	No
Éc : Concrete	Elastic Modulus	=	3,122	.02 ksi	Soil Passive Resistance (for Sliding)	=	250.0 pcf
Concrete Der	nsity	=	14	5.0 pcf	Soil/Concrete Friction Coeff.	=	0.30
Values	Flexure	=	0	.90			
The second second	Shear	=	0.	750	Increases based on footing Depth		
Analysis Set					Footing base depth below soil surface	=	2.50 ft
Min Steel % E	Bending Reinf.		=		Allow press. increase per foot of depth	=	ksf
Min Allow %	Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturn	ning Safety Factor		=	1.0 : 1			
Min. Sliding S	Safety Factor		=	1.0:1	Increases based on footing plan dimension		
Add Ftg Wt fo	or Soil Pressure		2	Yes	Allowable pressure increase per foot of depth		
Use ftg wt for	stability, moments & shears		1	Yes	L L L L L L L L L L L L L L L L L L L	=	ksf
Add Pedestal	Wt for Soil Pressure			Yes	when max. length or width is greater than	=	ft
Use Pedestal	wt for stability, mom & shear		1	Yes		_	п


Dimensions


Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	12.0 in

Pedestal dimensions		
	=	16.0 in
px : parallel to X-X Axis	_	
pz : parallel to Z-Z Axis	_	16.0 in
Height	-	24.0 in
Rebar Centerline to Edge of Co	oncrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars	=		4.0
Reinforcing Bar Size	=	#	6
Bars parallel to Z-Z Axis			
Number of Bars	=		4
Reinforcing Bar Size	=	#	6
Bandwidth Distribution Ch	eck (ACI 15.4.4.2)		
Direction Requiring Closer	Separation		
			n/a
# Bars required within zone	ı.		n/a
#Bars required on each sid	e of zone		n/a

Applied Loads

	20	D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	Ξ	0.7350			2.10	1.20		k ksf
M-xx M-zz	Ī.	0.720			2.250	1.260		k-ft k-ft
V-x	=	0.080			0.250	0.140		k
V-z	=							k

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **49** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

Printed: 14 APR 2024, 9:59PN
File: Case1.ec6
Softwere copyright ENERCALC, INC. 1983-2020, Build:12 20.8 2
AHZ Consulting Engineers

General Footing

Lic. #: KW-06012537

DESCRIPTION: Solar Pergola

D	ESIGN SU	IMMARY				Design OK
		Min. Ratio	Item	Applied	Capacity	Governing Load Combination
	PASS	0.740	Soil Bearing	1.110 ksf	1.50 ksf	+D+0.750S+0.450W
	PASS	4.039	Overturning - X-X	2.970 k-ft	11.996 k-ft	+D+S
	PASS	12.117	Overturning - Z-Z	0.990 k-ft	11.996 k-ft	+D+S
	PASS	11.531	Sliding - X-X	0.3305 k	3.811 k	+D+0.750S+0.450W
	PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
	PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
	PASS	0.04886	Z Flexure (+X)	0.9406 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W
	PASS	0.03637	Z Flexure (-X)	0.7001 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W
	PASS	0.04972	X Flexure (+Z)	0.9571 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W
	PASS	0.03637	X Flexure (-Z)	0.7001 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W
	PASS	0.06431	1-way Shear (+X)	5.284 psi	82.158 psi	+1.20D+1.60S+0.50W
	PASS	0.04597	1-way Shear (-X)	3.777 psi	82.158 psi	+1.20D+1.60S+0.50W
	PASS	0.06763	1-way Shear (+Z)	5.556 psi	82.158 psi	+1.20D+1.60S+0.50W
	PASS	0.01851	1-way Shear (-Z)	1.521 psi	82.158 psi	+1.40D
	PASS	0.04190	2-way Punching	6.884 psi	164.317 psi	+1.20D+1.60S+0.50W

Detailed Results

Rotation Axis &	and the second	Xecc	Zecc	Actua	Soil Bearing	Stress @ Loc	ation	Actual / Allov
Load Combination	Gross Allowable	((in)	Bottom Left	Top Left	Top Right	Bottom Right	Ratio
, D Only								0.000
. 71.6 deg CCW . +D+S	1.50	0.6057	1.817	0.4546	0.2551	0.3216	0.5211	0.347 0.000
, 71.6 deg CCW +D+0.750S	1.50	1.733	5.199	0.8339	0.01094	0.2853	1.108	0.739
, 71.6 deg CCW ,+D+0.60W	1.50	1.521	4.564	0.7391	0.07199	0.2944	0.9614	0.641
, 71.6 deg CCW +D+0.450W	1.50	1.078	3.235	0.5832	0.1743	0.3106	0.7196	0.480
, 71.6 deg CCW +D+0.750S+0.450W	1.50	0.9723	2.917	0.5511	0.1945	0.3134	0.670	0.447
, 71.6 deg CCW +0.60D+0.60W	1.50	1.732	5.196	0.8355	0.01134	0.2861	1.110	0.740 0.000
. 71.6 deg CCW .+0.60D	1.50	1.330	3.990	0.4014	0.07221	0.1819	0.5111	0.341
, 71.6 deg CCW	1.50	0.6057	1.817	0.2728	0.1531	0.1930	0.3127	0.209

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	0.720 k-ft	8.321 k-ft	11.557	ОК
X-X, +D+S	2.970 k-ft	11.996 k-ft	4.039	OK
X-X. +D+0.750S	2.408 k-ft	11.077 k-ft	4.601	OK
X-X. +D+0.60W	1.476 k-ft	9.581 k-ft	6.491	OK
X-X. +D+0.450W	1.287 k-ft	9.266 k-ft	7.20	OK
X-X, +D+0.750S+0.450W	2.975 k-ft	12.022 k-ft	4.042	OK
X-X, +0.60D+0.60W	1.188 k-ft	6.252 k-ft	5.263	OK
X-X, +0.60D	0.4320 k-ft	4.992 k-ft	11.557	OK
Z-Z, D Only	0.240 k-ft	8.321 k-ft	34.670	OK
Z-Z. +D+S	0.990 k-ft	11.996 k-ft	12.117	OK
Z-Z. +D+0.750S	0.8025 k-ft	11.077 k-ft	13.803	OK
Z-Z. +D+0.60W	0.4920 k-ft	9.581 k-ft	19.473	OK
Z-Z, +D+0.450W	0.4290 k-ft	9.266 k-ft	21.599	OK
Z-Z, +D+0.750S+0.450W	0.9915 k-ft	12.022 k-ft	12.125	OK
Z-Z, +0.60D+0.60W	0.3960 k-ft	6.252 k-ft	15.789	OK
Z-Z, +0.60D	0.1440 k-ft	4.992 k-ft	34.670	OK

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **50** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

All units k

Printed: 14 APR 2024, 9:59PN File: Case1.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12 20.8 2-AHZ Consulting Engineers **General Footing** Lic. # : KW-06012537 DESCRIPTION: Solar Pergola

Sliding Stability

Sliding Stability				7 til dilito
Force Application Axis Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
X-X, D Only	0.080 k	3.176 k	39.705	OK
X-X, +D+S	0.330 k	3.806 k	11.535	OH
X-X, +D+0.750S	0.2675 k	3.649 k	13.641	OK
X-X. +D+0.60W	0.1640 k	3.392 k	20.685	OH
X-X, +D+0.450W	0.1430 k	3.338 k	23.346	OH
X-X, +D+0.750S+0.450W	0.3305 k	3.811 k	11.531	OH
X-X, +0.60D+0.60W	0.1320 k	2.822 k	21.378	OH
X-X, +0.60D	0.0480 k	2.606 k	54.289	OF
Z-Z. D Only	0.0 k	3.176 k	No Slidina	OF
Z-Z, +D+S	0.0 k	3.806 k	No Slidina	OF
Z-Z, +D+0.750S	0.0 k	3.649 k	No Sliding	OF
Z-Z. +D+0.60W	0.0 k	3.392 k	No Sliding	OH
Z-Z, +D+0.450W	0.0 k	3.338 k	No Slidina	OH
Z-Z, +D+0.750S+0.450W	0.0 k	3.811 k	No Slidina	OF
Z-Z. +0.60D+0.60W	0.0 k	2.822 k	No Sliding	OF
Z-Z, +0.60D Footing Flexure	0.0 k	2.606 k	No Sliding	OF
				2018

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1,40D	0.4212	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1,40D	0.3726	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D	0.3610	+7	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D	0.3193	+Z -Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50S	0.5133	+7	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50S	0.4173	+Z -Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
		-2		0.2592				
X-X, +1.20D+0.50W	0.4469	+Z -Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50W	0.3748	-2	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+1.60S	0.8655	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+1.60S	0.6444	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+1.60S+0.50W	0.9571	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1,20D+1,60S+0,50W	0.7001	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+W	0.5327	+7	Bottom	0.2592 0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+W	0.4303	+Z -Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X. +1.20D+0.50S+W	0.6850	+7	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50S+W	0.5283	+Z -Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.303+VV X-X, +0.90D+W	0.4425	+Z		0.2592		0.5029	19.250	OK
		+2	Bottom	0.2592	Min Temp %			
X-X, +0.90D+W	0.3504	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.20S	0.4219	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.20S	0.3585	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +0.90D	0.2708	+Z -Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +0.90D	0.2395	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.40D	0.3726	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.40D	0.4181	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z. +1.20D	0.3193	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D	0.3584	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50S	0.4173	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
	0.5072			0.2592				
Z-Z, +1.20D+0.50S		+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50W	0.3748	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50W	0.4423	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+1.60S	0.6444	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+1.60S	0.8510	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+1.60S+0.50W	0.7001	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z. +1.20D+1.60S+0.50W	0.9406	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+W	0.4303	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z. +1.20D+W	0.5262	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z. +1.20D+0.50S+W	0.5283	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50S+W	0.6751	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
	0.0751							
Z-Z, +0.90D+W		-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +0.90D+W	0.4367	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	ok
Z-Z, +1.20D+0.20S	0.3585	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.20S	0.4179	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +0.90D	0.2395	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **51** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

Printed: 14 APR 2024, 9:59PN
File: Case1,ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.2
AHZ Consulting Engineers **General Footing** Lic. # : KW-06012537 DESCRIPTION: Solar Pergola

M u k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual in^2	As P	hi*Mn k-ft	Status
0.2688	+X	Bottom	0.2592	Min Temp %	0.502	29	19.250	OK
Vu @ -X	Vu@	+X Vı	ı@-Z Vι	u @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
2.04 ps	i	2.33 psi	1.52 psi	2.38 psi	2.38 psi	82.16 p	si 0.03	Ol
1.75 ps	i	1.99 psi	1.30 psi	2.04 psi	2.04 psi	82.16 p	osi 0.02	Ol
					2.93 psi	82.16 p	osi 0.04	OF
2.05 ps	i	2.47 psi	1.28 psi	2.54 psi	2.54 psi	82.16 p	osi 0.03	O
		4.78 psi	1.03 psi	5.02 psi	5.02 psi	82.16 p	si 0.06	O
		5.28 psi				82.16 p	si 0.07	O
		2.94 psi		3.05 psi	3.05 psi			O
		3.78 psi		3.95 psi	3.95 psi	82.16 p		O
								O
								OF
		1.50 psi	0.98 psi	1.53 psi	1.53 psi	82.16 p		O
,,,,,,							All units	k
	Vu		Phi*Vn		Vu / Phi*Vn			Status
	4.0 4.8 4.4 6.4 6.8 4.9 5.6 3.9 4.3	6 psi 0 psi 8 psi 5 psi 8 psi 1 psi 6 psi 0 psi 6 psi	164.32 164.32 164.32 164.32 164.32 164.32 164.32	Posi Posi Posi Posi Posi Posi Posi Posi	0.02469 0.02924 0.02729 0.03925 0.0419 0.02989 0.03443 0.02371 0.02651			OK OK OK OK OK OK OK OK OK
	k-ft 0.2688 Vu @ -X 2.04 ps 1.75 ps 2.27 ps 2.05 ps 3.48 ps 3.78 ps 2.34 ps 2.86 ps 1.90 ps 1.96 ps	k-ft	Nu @ -X Vu @ +X Vu Vu @ -X Vu @ +X Vu Vu Vu Vu Vu Vu Vu V	No. No.	Number N	No. No.	Number N	No. No.

Date: 04/15/2024 Job Code: 718 Remington Street Page **52** of **57**

Appendix 6

Strong-Bolt Machine Bolt

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **53** of **57**

Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	1/5
Project:	718 Remington Street		
Address:			
Phone:			
E-mail:			

1.Project information

Project description:

Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.500 Nominal Embedment depth (inch): 3.250 Effective Embedment depth, her (inch): 2.350 Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No h_{min} (inch): 5.00 c_{ac} (inch): 3.56 C_{min} (inch): 1.75

Recommended Anchor

S_{min} (inch): 3.00

Anchor Name: Titen HD® - 1/2"Ø Titen HD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713

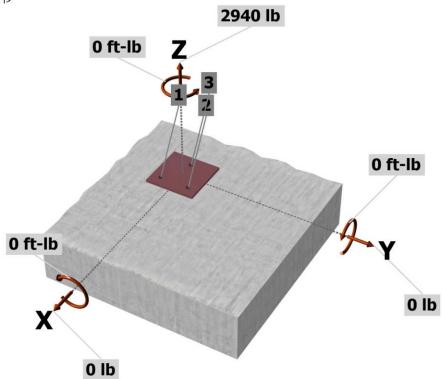
Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 5.00 State: Cracked Compressive strength, f'c (psi): 4000 Ψ_{c,V}: 1.0 Reinforcement condition: B tension, B shear Supplemental edge reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 5.00 x 5.00 x 0.25

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **54** of **57**

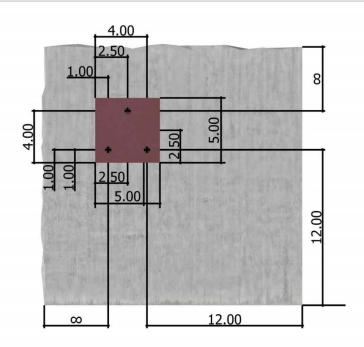

Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	2/5
Project:	718 Remington Street		
Address:			
Phone:			
E-mail:			

Load and Geometry
Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No

Strength level loads:

Nua [lb]: 2940 Vuax [lb]: 0 Vuay [lb]: 0 Mux [ft-lb]: 0 Muy [ft-lb]: 0 Muz [ft-lb]: 0

<Figure 1>



Date: 04/15/2024 Job Code: 718 Remington Street Page **55** of **57**

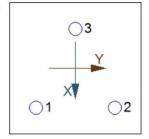
Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	3/5
Project:	718 Remington Street	3)	*
Address:			
Phone:			
E-mail:			

<Figure 2>

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **56** of **57**

Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	4/5
Project:	718 Remington Street		•
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces


Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	735.7	0.0	0.0	0.0
2	735.7	0.0	0.0	0.0
3	1468.6	0.0	0.0	0.0
Sum	2940.0	0.0	0.0	0.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 2940

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.50

<Figure 3>

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	φ	ϕN_{sa} (lb)	
20130	0.65	13085	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. 17.4.2.2a)

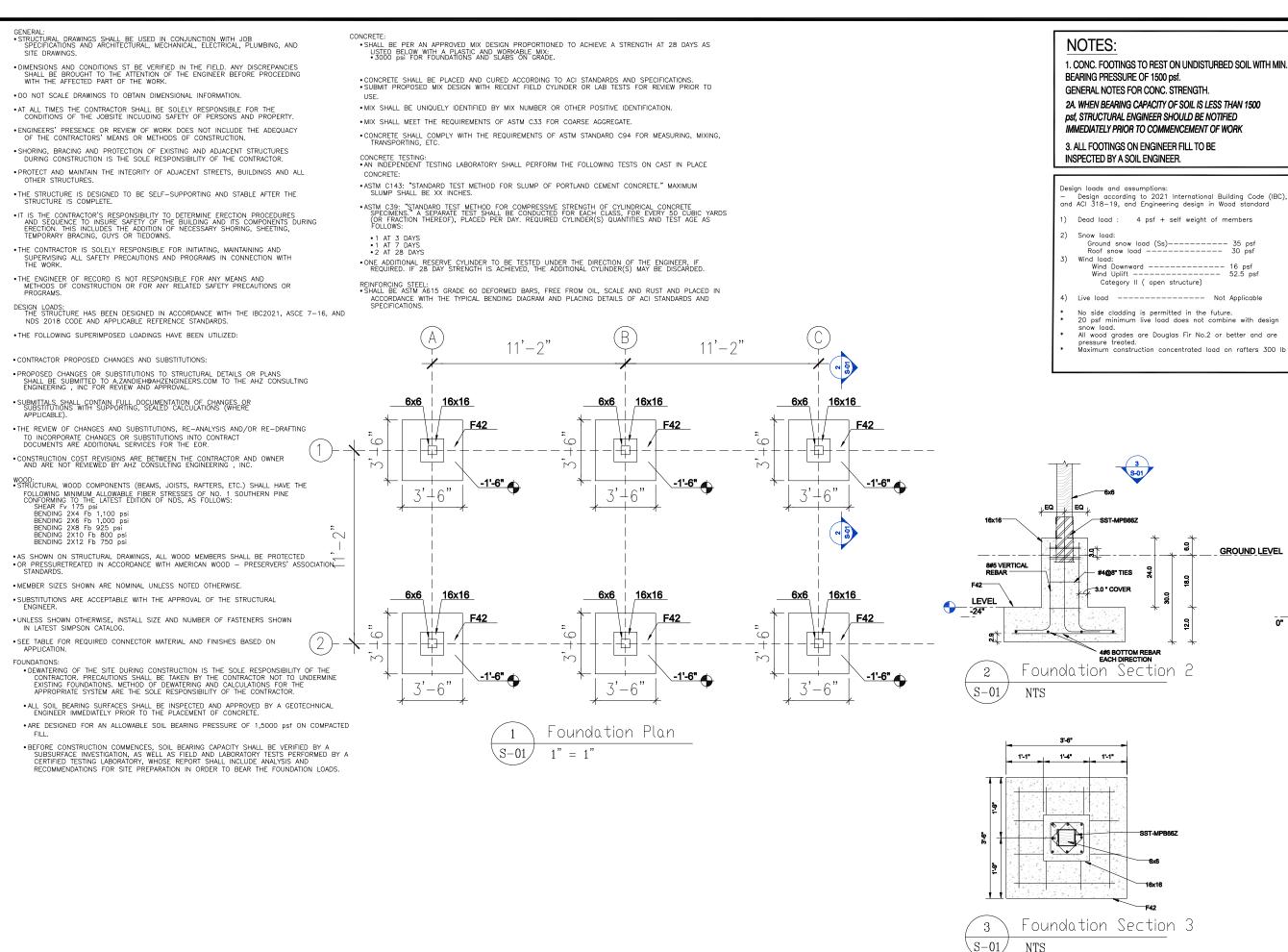
No	An .	ic (bai)	Her (III)	IND	(ID)				
17.0	1.00	4000	2.350	387	'3				
$\delta N_{cbg} = \phi (A_i)$	No / Anco) Pec, N	Ped,N Pc,N Pcp,NA	l _b (Sec. 17.3.1	& Eq. 17.4.2	.1b)				
A _{Nc} (in ²)	ANOO (in2)	Camin (in)	$\Psi_{oc,N}$	$\Psi_{od,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	φ	φN _{cbg} (lb)
92.00	49.70	12.00	0.876	1.000	1.00	1.000	3873	0.65	4083

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1469	13085	0.11	Pass
Concrete breakout	2940	4083	0.72	Pass (Governs)

1/2"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.


Job Code: 718
Remington Street
Page 57 of 57

Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	5/5
Project:	718 Remington Street	3)	*
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Z Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544 (901) 692-0431

AHZ

Contractor must check and verify all diment and be responsible for same, reporting any discrepancies to the Engineer before commencing work.

Signed Approved For Construction by the Engineer.

Engineer.

Finally and the besed for construction un armitis stall into the bused for Construction by the Engineer.

All drawings, pinits and specifications are the prints are not to be scaled. All work stall be returned to the STATE BILLIDING CODE and regulatory the latest edition of the STATE BILLIDING CODE and regulatory regulations of the BLINE BILLIDING CODE and regulatory regulations of the BLINE BILLIDING CODE and regulatory regulatory regulatory regulatory regulators and the Building Department.

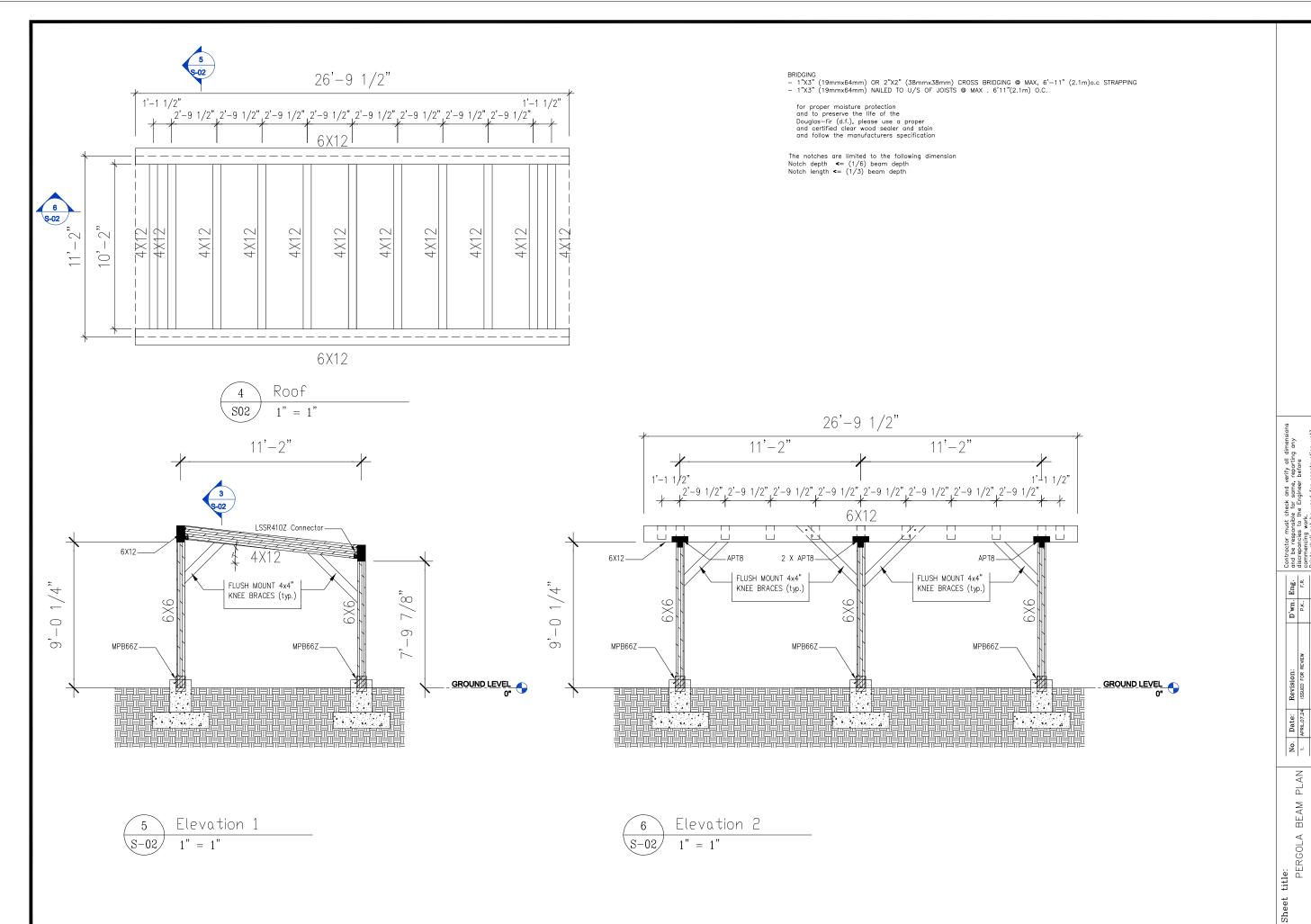
t and verify all dimensi same, reporting any ngineer before

PERGOLA PLANS AND ELEVATIONS

Sheet

Str 800

gton


718

the the

St æ

 \mathcal{O} no. 419

7

Contractor must check and verify all dimensions and be responsible for same, reporting any discondances to the Engineer before prints of the State of the Engineer before prints of the State of the Engineer before prints are not to be scaled. All drawings, prints and specifications are the property of the Engineer and shall be returned to him or completion of the work. The property of the Engineer and shall be returned all work shall be performed in accordance with the latest extend of the PROWINGE BUILDING CODE. NATIONAL BUILDING CODE. In AMIDNAL BUILDING CODE and regulations of the Building Department. These notes are to be read in conjunction with all drawings and specifications.

AHZ Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544 c. (901) 692-0431

PLAN BEAM Stre 805 title: PERGOLA [

718 Remington FortCollins, CO

no. -419

02

S

Street

Remington